
The Biologist’s Guide to Computing
Release 0.9.1

Tjelvar S. G. Olsson

December 30, 2016

Contents

1 Preface 1
1.1 Who should read this book . 1
1.2 Licence . 1
1.3 Source code . 1
1.4 Feedback . 2
1.5 Acknowledgements . 2

2 Getting some motivation 3
2.1 Why you should care about computing and coding . 3
2.2 What you can expect to learn here . 3

3 How to think like a computer 5
3.1 Binary, bits and bytes . 5
3.2 Character encodings . 6
3.3 Real numbers . 8
3.4 Boolean logic . 9
3.5 The microprocessor . 9
3.6 Computer memory . 10
3.7 Key concepts . 11

4 First steps towards automation 13
4.1 First things first, how to find help . 13
4.2 Creating a new directory for our project . 15
4.3 Downloading the Swiss-Prot knowledge base . 15
4.4 Creating a work flow using pipes . 17
4.5 Examining files, without modifying them . 17
4.6 Finding FASTA identifier lines corresponding to human proteins 19
4.7 Extracting the UniProt identifiers . 19
4.8 Using redirection to create an output file . 20
4.9 Viewing the command history . 20
4.10 Clearing the terminal window . 21
4.11 Copying and renaming files . 21
4.12 Removing files and directories . 21
4.13 Key concepts . 22

5 Structuring and storing data 23
5.1 Data structures . 23
5.2 Data persistence . 24

i

5.3 The beauty of plain text files . 25
5.4 Useful plain text file formats . 25
5.5 Tidy data . 28
5.6 Find a good text editor and learn how to use it . 29
5.7 Key concepts . 29

6 Keeping track of your work 31
6.1 What is Git? . 31
6.2 First time configuration of Git . 32
6.3 Initialise the project . 33
6.4 Create a script for downloading the SwissProt FASTA file . 34
6.5 Improve script for downloading SwissProt FASTA file . 37
6.6 Create script for counting the number of proteins in a genome 40
6.7 More useful git commands . 41
6.8 Key concepts . 42

7 Data analysis 43
7.1 What is Python? . 43
7.2 Using Python in interactive mode . 43
7.3 Variables . 44
7.4 Determining the GC count of a sequence . 44
7.5 Creating reusable functions . 45
7.6 List slicing . 46
7.7 Loops . 47
7.8 Creating a sliding window GC-content function . 48
7.9 Downloading the genome . 51
7.10 Reading and writing files . 52
7.11 Creating a function for reading in the Streptomyces sequence 54
7.12 Writing out the sliding window analysis . 56
7.13 Key concepts . 58

8 Data visualisation 61
8.1 Starting R and loading the Iris flower data set . 61
8.2 Understanding the structure of the iris data set . 62
8.3 A note on statistics in R . 64
8.4 Default plotting in R . 64
8.5 Installing the ggplot2 package . 64
8.6 Loading the ggplot2 package . 68
8.7 Plotting using ggplot2 . 68
8.8 Available “Geoms” . 72
8.9 Scripting data visualisation . 72
8.10 Faceting . 73
8.11 Adding more colour . 73
8.12 Purpose of data visualisation . 73
8.13 Conveying a message to an audience . 76
8.14 Writing a caption . 81
8.15 Other useful tools for scripting the generation of figures . 82
8.16 Key concepts . 82

9 Collaborating on projects 83
9.1 Find a friend . 83
9.2 Get a GitHub or BitBucket account . 83
9.3 Pushing the project to a remote server . 84
9.4 Collaboration using Git . 85
9.5 Working in parallel . 86

ii

9.6 Resolving conflicts . 89
9.7 Key concepts . 93

10 Creating scientific documents 95
10.1 Starting the manuscript . 95
10.2 Converting the document to HTML using pandoc . 96
10.3 Adding a figure . 96
10.4 Converting the document to PDF . 97
10.5 Reference management . 97
10.6 Adding meta data . 99
10.7 Benefits of using Pandoc and plain text files . 101
10.8 Alternative plain text approaches . 101
10.9 Using non-plain text file formats . 102
10.10Key concepts . 102

11 Automation is your friend 103
11.1 Introduction to make . 103
11.2 Creating a Makefile . 103
11.3 Key concepts . 106

12 Practical problem solving 107
12.1 Stop and think . 107
12.2 Measuring success . 108
12.3 More string processing . 112
12.4 Extracting the organism name . 117
12.5 Only running tests when the module is called directly . 121
12.6 Counting the number of unique organisms . 122
12.7 Finding the number of variants per species and the number of proteins per variant 123
12.8 Key concepts . 127

13 Working remotely 129
13.1 Jargon busting . 129
13.2 Logging in using the Secure Shell protocol . 130
13.3 Copying files using Secure Copy . 131
13.4 Password-less authentication using SSH keys . 132
13.5 Managing your login details using SSH config . 134
13.6 Executing long running commands on remote hosts . 134
13.7 Key concepts . 135

14 Managing your system 137
14.1 The file system . 137
14.2 The PATH environment variable . 138
14.3 The root user . 138
14.4 Using package managers . 139
14.5 Compiling software from source . 141
14.6 Installing Python packages . 142
14.7 Installing R packages . 144
14.8 Installing Perl modules . 145
14.9 Installing Latex packages . 145
14.10Automated provisioning . 146
14.11Key concepts . 146

15 Next steps 147
15.1 Apply what you have learnt . 147
15.2 Be social . 147

iii

15.3 Recommended reading . 148

16 Glossary 149

iv

CHAPTER1

Preface

1.1 Who should read this book
Biologists that need to use the command line. If you want to learn how to use the command line to install
and run software this book is for you. The command line is used throughout the book and you will quickly
gain familiarity with the most important commands. You will also learn how to install software and how to
work on remote machines. The latter will be important if you want to run bioinformatics software on your
institutes high performance cluster.

Biologists that want to create their own data analysis scripts. If you want to learn how to write your
own data analysis scripts this book is also for you. The book starts off by explaining fundamental computing
concepts, teaching you how to think like a computer. You will then learn how to use Python by creating a
script to analyse the guanine-cytosine (GC) content of a bacterial genome. There is also a chapter on data
visualisation that teaches you how to work with R. Furthermore, programming best practises are highlighted
and explained throughout the book.

Biologists that want to ensure their data analysis is reproducible. If you want to ensure that your data
analysis is reproducible this book is also for you. Early on you will learn how to use version control to track
changes to your projects. Furthermore, the concept of using automation to ensure reproducibility is explored
in detail.

No prior knowledge required. Important concepts and jargon are explained as they are introduced. No
prior knowledge is required. Just a willingness to learn, experiment and have fun geeking out.

1.2 Licence
This work uses the Creative Commons (CC0 1.0)1 licence. So you can copy, modify, distribute and perform
the work, even for commercial purposes, without having to ask for permission.

1.3 Source code
The source2 for this book is hosted on GitHub3.

1 http://creativecommons.org/publicdomain/zero/1.0/
2 https://github.com/tjelvar-olsson/biologists-guide-to-computing
3 https://github.com/

1

http://creativecommons.org/publicdomain/zero/1.0/
https://github.com/tjelvar-olsson/biologists-guide-to-computing
https://github.com/

The Biologist’s Guide to Computing, Release 0.9.1

1.4 Feedback
This book is still a work in progress. I would really appreciate your feedback. Please send me an email4 to let
me know what you think. Alternatively you can contact me via Twitter @tjelvar_olsson5, @bioguide2comp6

or message me via the Facebook page7.

If you want to receive updates about this book do sign up to the mailing list. You can find the sign up form
on the website: biologistsguide2computing.com8.

1.5 Acknowledgements
Thanks to Nadia Radzman, Sam Mugford and Anna Stavrinides for providing feedback on early versions of
the initial chapters. Many thanks to Tyler McCleary for continued in depth feedback and suggestions for
improvements. Thanks to Nick Pullen for feedback and discussions on the data visualisation chapter. Many
thanks to Matthew Hartley for discussions and encouragement.

I’m also grateful for feedback from Lucy Liu and Morten Grøftehauge.

4 tjelvar@biologistsguide2computing.com
5 https://twitter.com/tjelvar_olsson
6 https://twitter.com/bioguide2comp
7 https://www.facebook.com/biologistsguide2computing
8 http://biologistsguide2computing.com/

2 Chapter 1. Preface

mailto:tjelvar@biologistsguide2computing.com
https://twitter.com/tjelvar_olsson
https://twitter.com/bioguide2comp
https://www.facebook.com/biologistsguide2computing
http://biologistsguide2computing.com/

CHAPTER2

Getting somemotivation

2.1 Why you should care about computing and coding
Computers can be powerful allies. They are ideal for automating repetitive tasks. Furthermore, they can
perform calculations and analysis that are too complex for the human brain to process.

These days many parts of the biological sciences are becoming more and more data driven. Technological
advancements have led to a huge increase in the generation of biological data. Data analysis is required to
extract biological insights from this data. To a large extent the rate limiting factor in generating insight is
the lack of appropriate data analysis tools.

However, as a biologist you may prefer to work in the lab over sitting in front of the computer. You may even
ask yourself if learning to program has any benefit to you whatsoever.

Similar to learning a new language there are several benefits to learning computer programming. Impor-
tantly it gives you a new perspective. In fact professional programmers are encouraged to learn a new
programming language every year to allow them to experience new problem solving techniques.

More concretely, learning to program will help you get a better understanding of data analysis. It may even
expand your mind to allow you to see new possibilities available to you.

Furthermore, by getting more familiar with computing your interactions with programmers and data analysis
folk will improve. So even if you discover that you don’t like programming learning to code will help you
express your ideas to people that do.

2.2 What you can expect to learn here
Many books on computing assume that the reader has a basic knowledge of how a computer operates and
the associated jargon. This book attempts not to make any such assumptions and important concepts are
explained in How to think like a computer (page 5). Furthermore, important terms and their background
are explained throughout in attempt to demystify computing jargon. This should stand you in good stead
when faced with more advanced material on computing.

Use of the command line is required for many bioinformatics tools and access to high-performance computing
clusters. The essence of the Unix command line, used in both Linux and Macs, is introduced in First steps
towards automation (page 13). After which the command line is used persistently to interact with a variety
of useful programs. At the end you should feel comfortable using the command line to interact with your
computer and to automate tasks.

Data forms a central part of the biological sciences. However, dealing with large volumes of data can feel
overwhelming. One way to regain some control is to ensure that there is structure to the data. In Structuring

3

The Biologist’s Guide to Computing, Release 0.9.1

and storing data (page 23) important data structures and file formats for representing them are discussed.
The chapter also highlights the value of using plain text files to store data. After reading this chapter you
should have a good idea of how to store structured representations of your data.

Sooner or later one wishes that one had done a better job of keeping records of one’s work. What changes
were made when? What were the reasons behind the decisions to make those changes? These issues becomes
even more accentuated when working on scripts and programs where tiny changes can have devastating
effects. Because this is such an important issue in software development there are great tools for mitigating
against it. In Keeping track of your work (page 31) the concept of version control is introduced using the
popular open source tool Git. After working through the examples in this chapter you should feel comfortable
using Git to keep track of your work.

Being able to create data analysis scripts is empowering. In Data analysis (page 43) the Python scripting lan-
guage is introduced and we create a script for calculating the local GC content of the Streptomyces coelicolor
A3(2) genome. After working through this chapter you will have a basic knowledge of how to use Python to
read in data from a file, manipulate it and write out results to another file. The chapter also introduces more
general programming concepts such as variables, functions and loops.

Data visualisation is an important part of scientific investigation. In Data visualisation (page 61) the statis-
tical scripting language R is used to look at how one can explore data interactively from the command line
and create scripts that make the generation of figures reproducible. After working through this chapter you
will have a gained familiarity in working with R and an understanding of how to use R’s ggplot2 package to
create beautiful and informative figures.

The best science often involves collaboration. In Collaborating on projects (page 83) you will learn how to
use make use of the powerful collaboration features of Git and you will learn how to back up and share your
project using the free hosting services on GitHub.

Communication is an important aspect of science and one aspect of scientific communication is writing
manuscripts. In Creating scientific documents (page 95) you will learn how lightweight text documents can
be converted to beautiful scientific manuscripts with citations and bibliographies using Pandoc. You will also
learn how you can use Pandoc to convert (almost) any document file format into any other.

After having spent weeks and months analysing data, generating figures and assembling all the information
into a manuscript it can be devastating to find that one needs to start all over again because an updated
data set has become available. However, this needn’t be the case. If all your analysis, figure generation
and manuscript assembly was automated you would just need to replace the raw data and press “Go”. In
Automation is your friend (page 103) you will learn how to achieve this state of bliss.

When tackling more complex data analysis one needs to spend more time thinking about the problem up
front. In the Practical problem solving (page 107) chapter we will look at techniques for breaking problems
into smaller and more manageable chunks. The chapter will also extend your familiarity with Python, and
introduces the concepts of string manipulation and regular expressions.

At some point you may need to work on a remote computer. For many this may be when one needs access to
the institute’s high performance computing cluster. In Working remotely (page 129) you will learn how to
use the command line to log in to a remote computer and how to copy data to and from the remote machine.

Installing software is not particularly exciting. However, it is a means to an end. In Managing your system
(page 137) we go over various methods of installing software. The chapter also introduces some fundamen-
tal Unix-based systems administration concepts required to understand what is needed to install software
successfully.

Finally the book ends with Next steps (page 147), a short chapter giving some suggestions on how to continue
building your knowledge of scientific computing.

4 Chapter 2. Getting somemotivation

CHAPTER3

How to think like a computer

These days computers can perform complex task. However, at their core computers only have a relatively
small set of basic capabilities. Information is stored as zeros and ones and Boolean logic is used to perform
calculations.

This chapter will cover fundamental aspects of computing required to learn scripting and programming. It
will introduce bits and bytes and how they can be used to represent numbers and characters (as in letters and
symbols). The chapter will also give a brief overview of how a computer stores information and performs
calculations.

3.1 Binary, bits and bytes
In computing a bit is the smallest unit of information and it can be either zero or one. Suppose that we
wanted to represent a positive integer using zeros and ones. We can achieve this using using the base-2
numeral systems, a.k.a. binary.

Integer

An integer is a whole number, i.e. a number that can be expressed without a fractional component. In
computing people often make a distinction between signed and unsigned integers. The former includes
negative values and the latter does not.

Take for example the number 108. This number can be represented as two sets of hundreds and eight sets
of ones (as well as zero sets of tens).

108 = 100 + 0 + 8

= (1 * 100) + (0 * 10) + (8 * 1)
= (1 * 102) + (0 * 101) + (8 * 100)

The equations above illustrate the basis of the base-10 numeral system. Note that the base of the exponent
in each term is ten. This means that one needs ten states to represent numbers. However, computers only
have two states 0 and 1. To express an integer in binary we therefore need to formulate it so that the base
of each exponent is 2.

108 = 64 + 32 + 0 + 8 + 4 + 0 + 0

= (1 * 64) + (1 * 32) + (0 * 16) + (1 * 8) + (1 * 4) + (0 * 2) + (0 * 1)
= (1 * 26) + (1 * 25) + (0 * 24) + (1 * 23) + (1 * 22) + (0 * 21) + (0 * 20)

5

The Biologist’s Guide to Computing, Release 0.9.1

Bit

In computing the term “Bit” is an abbreviation of the term “Binary digIT”.

So to express 108 as binary we could use the bits 1101100.

Table 3.1: Representing the integer
108 in binary.

64 32 16 8 4 2 1
1 1 0 1 1 0 0

In computing bits are often grouped together and the most common grouping is to bundle 8-bits together,
this is known as a byte. One byte can therefore have 256 unique states. An unsigned 8-bit integer, stored in
a byte, can therefore represent any integer ranging from 0 to 255.

To recap, in computing a bit is the smallest unit of information and it can be either zero or one, and a byte
is eight bits grouped together. Using several bits we can express integers using the binary numeral system.

3.2 Character encodings
If a computer only works in terms of zeros and ones how can one use it to read and write text? This is the
subject of character encodings.

One of the most prevalent character encodings is ASCII (American Standard Code for Information Inter-
change), which was first published in 1963. It has its roots in telegraphic codes. Based on the English
alphabet it encodes 128 characters into 7-bit integers (Fig. 3.1). These characters include: 0-9, a-z, A-Z, the
space character, punctuation symbols and control codes for operating Teletype machines. Although many
of the control characters are now obsolete some of them still form the basis of how we interpret text in
computers. For example the “line feed” character, which originally moved the paper in the printer forward,
is now used to represent new lines in text documents.

In going from Teletype machines to computers different operating systems had different interpretations on
how new lines should be represented. One surviving convention, still in use in Windows, requires both the
“line feed” and the “carriage return” characters. The former representing the advancement of paper in the
printer and the latter the repositioning of the print-head. Another convention, used in Unix-like systems,
is to simply use the line feed character to represent new lines. This can result in compatibility issues when
opening Unix-like text files in some Windows programs. For example when one opens a multi-line file with
Unix-based line endings in Notepad the text appears like one long line.

Many other character encodings are based on ASCII. A famous example is ISO-8859-1 (Latin 1), which uses
an eighth bit to expand the ASCII character set to include the remaining characters from the Latin script.

These days the emergent standard is Unicode, which provides a standard encoding for dealing with most of
the worlds writing systems. Unicode is backwards compatible with ASCII and ISO-8859-1 in that Unicode’s
code points, the natural numbers used to assign unique characters, have the same values as those of the
ASCII and ISO-8859-1 encodings.

Natural number

A natural number is a whole non-negative number. In computing such a number is commonly referred
to as an unsigned integer.

9https://commons.wikimedia.org/wiki/File%3AASCII_Code_Chart-Quick_ref_card.png

6 Chapter 3. How to think like a computer

The Biologist’s Guide to Computing, Release 0.9.1

Fig. 3.1: ASCII Code Chart, scanner copied from the material delivered with TermiNet 300 impact type
printer with Keyboard, February 1972, General Electric Data communication Product Dept., Waynesboro VA.
By Namazu-tron [Public domain], via Wikimedia Commons9.

3.2. Character encodings 7

https://commons.wikimedia.org/wiki/File%3AASCII_Code_Chart-Quick_ref_card.png

The Biologist’s Guide to Computing, Release 0.9.1

So in computers “text” is really just a convention that maps integers to characters, or more formally a
character encoding.

3.3 Real numbers
So we have learnt that integers can be represented in computers with zeros and ones by making use of the
binary numeral system. Let us now discuss how real numbers can be represented and some issues that one
can come across when working with these.

Real numbers

Real numbers include rational numbers such as integers and fractions as well as irrational numbers
such as the

√
2 and 𝜋.

One way of storing and working with real numbers is to use the fixed-point number representation. A fixed-
point number is basically an integer that is scaled by an implicit factor. So if the implicit scaling factor was
1/10 and the explicit integer was 127 then the real number represented would be 12.7.

The fixed-point number representation has the disadvantage that the range of numbers that can be repre-
sented is relatively small. Consider an unsigned 8-bit integer. It can represent the range 0 to 255. With an
implicit scaling factor of 1/10 it can represent the numbers 0.0 to 25.5 with a step size of 0.1. With an implicit
scaling factor of 1/100 it could represent the numbers 0.00 to 2.55 with a step size of 0.01.

The floating-point number was invented to work around the inherent small range limitation of fixed-point
number representations. Floating-point numbers basically allow the decimal (radix) point to float. This
means that numbers of differing orders of magnitude can be expressed using the same units. It is similar to
scientific notation where the distance to the moon can be expressed as 3.844 * 108 and the size of a typical
bacterium can be expressed as 1.0 * 10−6. A consequence of this is that the numbers that can be expressed
are not uniformly spaced, i.e. as the size of the exponent increases the step size between two representable
numbers increases.

Floating point number

Floating point is a means to represent real numbers. The term refers to the fact that the radix point
of the number is allowed to “float” relative to the significant digits of the number. For example the
numbers 12.7−10, 12.7 and 12.77 could all be expressed by floating the radix point around the significant
digits 127.

Not all numbers can be represented precisely using floating-point numbers. Furthermore, arithmetic oper-
ations on floating-point numbers cannot truly represent arithmetic operations. This can lead to issues with
accuracy. We can illustrate this using Python (we will get more details on scripting and Python in the Data
analysis (page 43) chapter).

>>> 0.6 / 0.2
2.9999999999999996

In the above a rounding error of 4 * 10−16 has been introduced as a consequence of working with floating
point representations of numbers.

8 Chapter 3. How to think like a computer

The Biologist’s Guide to Computing, Release 0.9.1

3.4 Boolean logic
Boolean logic is a mathematical formalism for describing logical relations. In Boolean logic things are either
True or False. These truth values are often represented as 1 and 0 respectively. There are three basic
operators AND, OR and NOT for working with truth values. These are sometimes referred to as logic gates.

x y x AND y x OR y
0 0 0 0
1 0 0 1
0 1 0 1
1 1 1 1

x NOT x
0 1
1 0

Using these axioms more complex logic gates can be built up. For example, by combining NOT and AND one
can create what is commonly referred to as a NAND gate.

x y x AND y NOT (x AND y)
0 0 0 1
1 0 0 1
0 1 0 1
1 1 1 0

Importantly one can use Boolean logic gates to implement integer arithmetic and memory. This combined
with the fact that it is relatively easy to physically implement Boolean logic using relays led to the construc-
tion of the first computers.

Although you may not want to create your own computer, having a basic understanding of Boolean logic will
help you when implementing algorithms. For example one often needs to make conditional logic statements
along the lines of “IF the cell contains green fluorescent protein AND it is illuminated with light of wavelength
395 nm THEN it will emit fluorescence at 509 nm”.

Note: Boolean logic is also used in Boolean networks, a formalism that can be used to describe gene regula-
tory networks at the protein expression level, i.e. mRNA and protein concentrations are not considered. The
expression level of each gene is considered to be either on or off, a.k.a. 1 or 0. The state of the model is the
set of Boolean values used to describe the gene network transcription levels at that point in time. Inhibition
and activation are modeled by creating Boolean rules, which can be further combined using Boolean logic.
By iteratively applying the Boolean rules the dynamics of the system can be evaluated over time. As time
progresses the number of states of the network decreases as the system is driven towards a relatively small
number of dynamic cycles and stable states, known as attractors. The attractors often correspond to specific
differentiated states of cells in biological systems.

3.5 Themicroprocessor
A microprocessor executes machine instructions. Machine instructions tell the microprocessor what to do. At
the most basic level there are three things that a microprocessor can do: perform mathematical operations,
move data from one memory location to another, make decisions and jump to new sets of instructions based
on those decisions.

3.4. Boolean logic 9

The Biologist’s Guide to Computing, Release 0.9.1

The C programming language

C is a popular programming language designed by Dennis Ritchie in 1972. It is a low-level language,
which means that it allows the programmer to work close to the hardware by providing direct access to
the system’s memory. One of the most famous C projects is the Linux kernel, which is a massive open
source project with millions of lines of code and thousands of contributors.

Most programming languages provide some sort of abstraction layer so that the programmer does not need
to think in terms of machine instructions. For example, the main purpose of a C compiler is to convert C
source code into machine instructions.

When working with higher level languages, such as Python, one does not really need to worry about what
happens at the microprocessor level.

However, knowing that a microprocessor can make decisions and jump to new sets of instructions can be
useful when trying to understand concepts such as loops. A loop is essentially a set of machine instructions
that end with a decision to jump back to the beginning of the same set of instructions.

Loops often include a condition for exiting the loop. If the condition for exiting the loop is not defined, or it
cannot be reached, the loop will keep cycling forever in what is termed an “infinite loop”.

Below is a basic C program illustrating a while loop. The loop terminates when the integer i is no longer
less than 3.

1 int main () {
2 int i = 0;
3 while(i < 3) {
4 i = i + 1;
5 }
6 return 0;
7 }

In more detail, the lines 1 and 7 define a small set of code that forms the main part of the program. Line 2
defines an integer, i, and sets it equal to 0. Lines 3 and 5 define a while loop to iterate as long as i is less
than 3. Line 4 executes a command to change the value of i. Line 6 states that the main program should
return an exit status 0.

What the exit status of a program?

The exit status of a program is a means for the program to state if it was terminated normally or
abnormally. The exit status 0 means that the program ended normally. Any other exit status means that
the program was terminated abnormally.

3.6 Computermemory
Computer memory comes in different forms with different characteristics. The hard drive of a computer is a
type of memory where data can be stored permanently. RAM (Random Access Memory) is a type of memory
where data is volatile, i.e. it is not retained when the machine reboots. A less well known type of memory
is the registry, which resides in the CPU (Central Processing Unit). Being physically close to the CPU means
that reading and writing of data to the registry is very fast. Other important characteristics of computer
memory include the its size and cost. Below is a table summarising these characteristics.

10 Chapter 3. How to think like a computer

The Biologist’s Guide to Computing, Release 0.9.1

Location Speed Size Cost Volatile
Registry Very fast Very small Very expensive Yes
RAM Fast Small/Moderate Expensive Yes
Hard disk Slow Very large Cheap No

One could liken these types of storage to different cooling devices in the lab. The minus 80 freezer is
large and represents a way to store DNA plasmids and primers persistently. When preparing for a cloning
experiment one may get samples of plasmids and primers and store them in the fridge in the lab for easy
access. However, although the lab fridge provides easy access it does not present a permanent storage
solution. Finally, when performing the cloning experiment one takes the samples out of the fridge and places
them in an ice-bucket. The ice-bucket is a “working storage” solution to which one can have very fast access.
In the example above the minus 80 freezer represents the hard disk, the lab fridge represents RAM and the
ice bucket represents the registry.

If one is working with really large data sets the main bottleneck in the processing pipeline can be reading
data from and writing data to memory. This is known as being I/O (input/output) bound.

3.7 Key concepts
• A bit is the smallest piece of data that can be stored in a computer, it can be set to either zero or one

• A byte is 8-bits

• An unsigned 8-bit integer can represent any of the integers between 0 and 255

• A character encoding maps characters to integers, common character encodings include ASCII and
Unicode

• Real numbers tend to be handled using floating-point representation

• There are some inherent limitations when working with floating-point numbers which can lead to
issues with accuracy

• Boolean logic is one of the main tools employed by the computer to do work and to store data

• A microprocessor executes machine instructions

• Machine instructions can tell the microprocessor to perform mathematical operations, move data
around and to make decisions to jump to new sets of machine instructions

• The hard disk, RAM and the register are different types of memory with different characteristics

• Processes that spend most of their time reading and writing data are said to be I/O bound

3.7. Key concepts 11

The Biologist’s Guide to Computing, Release 0.9.1

12 Chapter 3. How to think like a computer

CHAPTER4

First steps towards automation

One of the first steps towards automating repetitive tasks is to become familiar with the command line. In
this chapter we will accomplish this by using the command line to extract UniProt identifiers for all human
proteins in Swiss-Prot.

More precisely we will be using a terminal emulator to run Bash. A terminal emulator is an application that
gives you access to another program known as the shell. The shell allows you to interact with the operating
system’s services and programs. The most widely used shell and the default on Mac and most Linux based
distributions is Bash.

You will get the most benefit from this chapter if you work through the example as you go along. You are
therefore encouraged to open up a terminal now (Fig. 4.1)!

On Macs the command line is available through the Terminal application. There are a number of terminal
emulators available for Linux. If you are using the Gnome-based desktop the default is likely to be the Gnome
Terminal.

On Windows things are a little bit more complicated. Windows does not come bundled with Bash by default.
I would recommend installing VirtualBox10 and running a Linux distribution such as BioLinux11 in it. Virtu-
alBox is a so called hypervisor that lets you run a virtual machine. In this scenario you would run BioLinux
as a virtual machine. For more information on how to run BioLinux as a virtual machine see the BioLinux
installation notes12.

The benefit of learning how to use Linux/Mac and Bash is that most bioinformatics software are developed
on and designed to run on these platforms. Furthermore, the terminal and Bash provides an excellent way
of creating analysis pipelines.

4.1 First things first, how to find help
Most of the commands on the command line have built in help that can be accessed by providing either the
argument -h or --help. For example to access help for the gunzip command, which we will use later, enter
the command below into the shell and press enter:

$ gunzip --help

More descriptive documentation can usually be found using the man (manual) command. For example to
view the manual page of the ls command you can run the command below.

10 https://www.virtualbox.org/
11 http://environmentalomics.org/bio-linux-download/
12 http://environmentalomics.org/bio-linux-installation/

13

https://www.virtualbox.org/
http://environmentalomics.org/bio-linux-download/
http://environmentalomics.org/bio-linux-installation/
http://environmentalomics.org/bio-linux-installation/

The Biologist’s Guide to Computing, Release 0.9.1

Fig. 4.1: Bash shell running in a Terminal application. The prompt displays the the name of the user
(olsson), the name of the machine (laptop) and the current working directory (~). Note that the dollar
symbol ($) is an indication that input is expected, i.e. the shell expects commands to be entered after it.
The prompt displayed in the Bash shell can be customised. As such the prompt on your system may look
different.

14 Chapter 4. First steps towards automation

The Biologist’s Guide to Computing, Release 0.9.1

$ man ls

To get out of the “man-page” press the “q” key. Just like I encourage you to try out the examples outlined in
this chapter, I also encourage you to examine the help and man-page documentation for the commands that
we use to get a better understanding of what the commands do.

4.2 Creating a new directory for our project
First of all let us make sure that we are working in our home directory.

$ cd

The cd command, short for change directory, is used to move between directories. If called without a path to
a directory it will move you into your home directory.

We can print out the name of the current working directory using the pwd command. Furthermore we can list
the contents of a directory using the ls command.

$ pwd
/home/olsson
$ ls

Now that we know where we are and what files and directories are present let us create a new directory for
our project. This is achieved using the mkdir command, short for make directory. After having created the
directory move into it using the cd command.

$ mkdir first_step_towards_automation
$ cd first_step_towards_automation

Note: When using the command line one learns to avoid using white spaces in file and directory names.
This is because white spaces are used to separate arguments. In the example above we used underscores
instead of white spaces. However, one could just as well have used hyphens. This comes down to personal
preference. It is possible to represent file names with spaces in them on the command line by using the
backlash character (\) to “escape” the whitespace, for example first\ steps\ towards\ automation or by
surrounding the text in quotes "first steps towards automation".

4.3 Downloading the Swiss-Prot knowledge base
UniProt (Universal Protein Resource) is a comprehensive resource of protein sequences and annotations. The
UniProt Knowledgebase (UniProtKB) consists of Swiss-Prot and TrEMBLE. Both are annotated. However, the
procedure in which they are annotated differ. TrEMBLE uses an automatic annotation system, whereas the
annotation in SwissProt is manual and includes a review process.

It is time to download the Swiss-Prot knowledge base from UniProt. We will use the curl program to do this.
The curl command is a C program that allows us to stream data from URLs and FTP sites. By default the
curl program writes the content of the URL to the standard output stream. To see this in action try running
the command:

$ curl www.bbc.com

You should see a whole lot of HTML text appearing in your terminal window.

4.2. Creating a new directory for our project 15

The Biologist’s Guide to Computing, Release 0.9.1

However, because we are going to download a large file we would like to write it to disk for future use.
Many command line programs allow the user to specify additional options. In this particular case we can
use the --output option to specify a file name that the output should be written to. To exemplify this let us
download the BBC home page to a file named bbc.html.

$ curl --output bbc.html www.bbc.com

Here we will use a URL shortened using bitly13 to save on typing. The shortened URL contains a redirect
to the relevant Swiss-Prot FASTA file hosted on the UniProt FTP site. To find out where the shortned URL
redirects to run the command:

$ curl http://bit.ly/1l6SAKb

What is URL shortening?

URL shortening is a means to make URLs shorter whilst still directing the client to the desired page. It
is achieved by using a redirect from a domain that is short, to the page with the longer URL. To view
the HTTP redirect code, 301 Moved Permenantly, you can use curl‘s verbose option.

$ curl --verbose http://bit.ly/1l6SAKb

To allow the redirection to occur we need to use the --location option, which will redirect the request to
the new location. Let us download the gzipped FASTA file from the UniProt FTP site:

$ curl --location --output uniprot_sprot.fasta.gz http://bit.ly/1l6SAKb

The downloaded file uniprot_sprot.fasta.gz has been compressed using the gzip protocol. We can extract
it using the gunzip command. However, when extracted it more than doubles in size. So we will use the
--to-stdout option to extract the content to the standard output stream whilst leaving the original file
compressed.

Try running the command:

$ gunzip --to-stdout uniprot_sprot.fasta.gz

You should see a lot of FASTA lines printed to your terminal, or more formally the standard output stream.

What is a FASTA file?

FASTA is a simple file format for storing nucleotide or peptide sequences. It consists of a single-line
description, starting with the greater than symbol (>), and a sequence which can be spread over several
lines.

>TATA box
TATAAA
>Pribnow box
TATAAT

Options starting with two dashes, --, are known as long options. Many of these long options also have
abbreviated “short” options. For example, the -c option of gunzip is equivalent to the --to-stdout option.
Try running the command:

$ gunzip -c uniprot_sprot.fasta.gz

From now on the text will use the short -c option rather than the long --to-stdout option to save on typing.

13 https://bitly.com/

16 Chapter 4. First steps towards automation

https://bitly.com/

The Biologist’s Guide to Computing, Release 0.9.1

Note: Remember that you can use the --help or -h option to get information on the meanings of the various
options available to you.

Tab completion

Another way to save on typing in the terminal is to use tab completion. Start typing the command
that you want to use and hit the tab key. For example, type in gu and then press the tab key. This will
complete the command to gunzip without you having to do any more typing. If the letters typed into
the terminal are not sufficient to specify a unique command it will list all of the possible options.
You can also use tab completion to fill in the names of existing files and directories.

4.4 Creating awork flow using pipes
Now it is time to introduce one of the greatest features of the command line: pipes! Pipes are a means to
redirect the output from one command into another. The character used to represent a pipe is the vertical
bar: |.

To illustrate the use of pipes we will redirect the output of the previous gunzip command to the word count
program wc. Try running the command below:

$ gunzip -c uniprot_sprot.fasta.gz | wc

Re-using previous command

Rather than having to retype commands try using the “Up” and “Down” arrows to get access to previous
commands.

It should give you three numbers, these are the line, word and character counts. To only see the line count
one could use the -l option:

$ gunzip -c uniprot_sprot.fasta.gz | wc -l

Pipes are powerful because they allow a set of simple commands to be combined to perform tasks that are
beyond the scope of any of the individual commands. This has led to a central Unix philosophy of having
simple programs that do one task well and a rich ecosystem of such programs. The user is then free to
combine these programs to create personalised tools to automate repetitive processing tasks.

Another powerful feature of pipes is that the program being piped to gets access to the output stream of data
from the program piping data into the pipe as soon as it is available. This means that the processing of data
can happen in parallel.

4.5 Examining files, withoutmodifying them
Unix-based systems make a distinction between programs that are used for examining files, known as pagers,
and programs that are used for editing files, known as text editors. The reason for making this distinction is
to help prevent accidental changes to files when reading them.

To view the beginning of a file one can use the head command. Let us examine the first lines of the
uniprot_sprot.fasta.gz file by pipeing the output of the gunzip command into head:

4.4. Creating awork flow using pipes 17

The Biologist’s Guide to Computing, Release 0.9.1

$ gunzip -c uniprot_sprot.fasta.gz | head

You should see something like the output below being written to the terminal window.

Listing 4.1: First ten lines of the uniprot_sprot.fasta.gz file. Note that the identifier lines have been
truncated to only display the first 65 characters.

>sp|Q6GZX4|001R_FRG3G Putative transcription factor 001R OS=Frog ...
MAFSAEDVLKEYDRRRRMEALLLSLYYPNDRKLLDYKEWSPPRVQVECPKAPVEWNNPPS
EKGLIVGHFSGIKYKGEKAQASEVDVNKMCCWVSKFKDAMRRYQGIQTCKIPGKVLSDLD
AKIKAYNLTVEGVEGFVRYSRVTKQHVAAFLKELRHSKQYENVNLIHYILTDKRVDIQHL
EKDLVKDFKALVESAHRMRQGHMINVKYILYQLLKKHGHGPDGPDILTVKTGSKGVLYDD
SFRKIYTDLGWKFTPL
>sp|Q6GZX3|002L_FRG3G Uncharacterized protein 002L OS=Frog virus ...
MSIIGATRLQNDKSDTYSAGPCYAGGCSAFTPRGTCGKDWDLGEQTCASGFCTSQPLCAR
IKKTQVCGLRYSSKGKDPLVSAEWDSRGAPYVRCTYDADLIDTQAQVDQFVSMFGESPSL
AERYCMRGVKNTAGELVSRVSSDADPAGGWCRKWYSAHRGPDQDAALGSFCIKNPGAADC

The beauty of the head command is that it allows you to quickly view the beginning of a file without having
to read in the content of the entire file. The latter can present a real problem if working on “big data” files.
In fact, this is also the beauty of pipes, which allows downstream programs to work on the stream of data
without having to wait for it to be written to or read from disk.

By default the head command writes out the first ten lines. However, this can be modified using the -n
option, for example to write out the first 20 lines:

$ gunzip -c uniprot_sprot.fasta.gz | head -n 20

Similarly, there is a tail command for displaying the tail end of a file, again ten lines by default.

$ gunzip -c uniprot_sprot.fasta.gz | tail

You may have noticed that the workflow above, to view the last ten lines, took a little longer to complete.
That is because we needed to decompress the whole file before we could access the last ten lines of it.

To page through an entire file one can use the less command.

$ gunzip -c uniprot_sprot.fasta.gz | less

One can use the “Up” and “Down” arrows to navigate through the file using less. One can also use the
“Space” key to move forward by an entire page, hence the term pager. To page back one page press the “b”
key. When you are finished examining the file press “q” to quit less.

How am I supposed to be able to remember that less is a pager?

As you may have noticed, if one does not use a pager, the standard output is simply written to the
terminal. This can be frustrating if the file is large and one wants to start reading at the top of the
file and then page through it as one reads along. This is what pagers are for, moving through files one
page at a time. One of the original pager programs was called more. It simply displayed one page of
output at a time and when one wanted “more” output one simply pressed the space key. A usability
issue with the more program was that it did not allow users to go back up a page. The less pager was
therefore developed to work around this issue. It implemented reverse scrolling and a number of other
additional features not present in more. However, less also implemented all the original features of the
more program, resulting in the mnemonic “less is more”.

18 Chapter 4. First steps towards automation

The Biologist’s Guide to Computing, Release 0.9.1

4.6 Finding FASTA identifier lines corresponding to human proteins
Now that we have an idea of what the file looks like it is time to extract the FASTA identifiers that correspond
to human proteins.

A powerful command for finding lines of interest in text is the grep program, which can be used to search
for strings and patterns. Let us use it to search for the string “Homo”:

$ gunzip -c uniprot_sprot.fasta.gz | grep Homo | less

To make the match more visible we can add the --color=always option, which will highlight the matched
string as red.

$ gunzip -c uniprot_sprot.fasta.gz | grep --color=always Homo | less

If you scroll through the matches you will notice that we have some false positives. We can highlight these
by performing another grep command that finds lines that do not contain the string “sapiens”, using the
--invert-match option or the equivalent -v short option.

$ gunzip -c uniprot_sprot.fasta.gz | grep Homo | grep -v sapiens

To make the search more specific we can search for the string “OS=Homo sapiens”. To do this we need to
surround the search pattern by quotes, which tells the shell that the two parts separated by a white space
should be treated as one argument.

$ gunzip -c uniprot_sprot.fasta.gz | grep "OS=Homo sapiens"

To work out how many lines were matched we can pipe the output of grep to the wc command.

$ gunzip -c uniprot_sprot.fasta.gz | grep "OS=Homo sapiens" | wc -l

4.7 Extracting the UniProt identifiers
Below are the first three lines identified using the grep command.

Listing 4.2: First three lines of the uniprot_sprot.fasta.gz file identified using the grep command. Note
that the lines have been truncated to only display the first 65 characters.

>sp|P31946|1433B_HUMAN 14-3-3 protein beta/alpha OS=Homo sapiens ...
>sp|P62258|1433E_HUMAN 14-3-3 protein epsilon OS=Homo sapiens GN=...
>sp|Q04917|1433F_HUMAN 14-3-3 protein eta OS=Homo sapiens GN=YWHA...

Now that we can identify description lines corresponding to human proteins we want to extract the UniProt
identifiers from them. In this instance we will use the command cut to chop the line into smaller fragments,
based on a delimiter character, and print out the relevant fragment. The delimiter we are going to use is the
vertical bar (“|”). This has got nothing to do with pipeing, it is simply the character surrounding the UniProt
identifier. By splitting the line by “|” the UniProt id will be available in the second fragment.

The command below makes use of the backslash character (\) at the end of the first line. This tells bash
that the command continues on the next line. You can use this syntax in your scripts and in the terminal.
Alternatively, you can simply include the content from both lines below in a single line, omitting the \.

$ gunzip -c uniprot_sprot.fasta.gz | grep "OS=Homo sapiens" \
| cut -d '|' -f 2

4.6. Finding FASTA identifier lines corresponding to human proteins 19

The Biologist’s Guide to Computing, Release 0.9.1

In the above the -d option specifies the delimiter to use to split the line, in this instance the pipe symbol (|).
The -f 2 option specifies that we want to extract the second field.

Note: Remember to try out these commands on your computer to see the actual output of the commands.

4.8 Using redirection to create an output file
By default the output from commands are written to the standard output stream. Earlier we saw that we
could use the pipes to redirect the output to another command. However, it is also possible to redirect the
output to a file, i.e. save the output to a file. This is achieved using the greater than symbol (>). You can use
the idea of an arrow as a mnemonic, the output is going from the command into the file as indicated by the
arrow.

$ gunzip -c uniprot_sprot.fasta.gz | grep "OS=Homo sapiens" \
| cut -d '|' -f 2 > human_uniprot_ids.txt

Now if you run the ls command you will see the file human_uniprot_ids.txt in the directory and you can
view its contents using less:

$ less human_uniprot_ids.txt

The < redirection command

There is a third type of redirection <. This type of redirection is so common that it is often made
implicit. The two commands below, for example, are equivalent.

$ wc -l < human_uniprot_ids.txt
20197

$ wc -l human_uniprot_ids.txt
20197 human_uniprot_ids.txt

Well done! You have just extracted the UniProt identifiers for all human proteins in Swiss-Prot. Have a cup
of tea and a biscuit.

The remainder of this chapter will go over some more useful commands for working on the command line
and reiterate some of the key take home messages.

4.9 Viewing the command history
Okay, so you have had a relaxing cup of tea and your head is no longer buzzing from information overload.
However, you have also forgotten how you managed to extract those UniProt identifiers.

Not to worry. You can view the history of your previous commands using history:

$ history

Note that each command has a history number associated with it. You can use the number in the history
to rerun a previous command without having to retype it. For example to rerun command number 597 you
would type in:

20 Chapter 4. First steps towards automation

The Biologist’s Guide to Computing, Release 0.9.1

$!597

Note that the exclamation mark (!) in the above is required.

4.10 Clearing the terminal window
After having run the history command the terminal window is full of information. However, you find it
distracting to have all those commands staring at you whilst you are trying to think.

To clear the screen of output one can use the clear command:

$ clear

Sometimes, for example if you try to view a binary file using a pager, your shell can start displaying garbage.
In these cases it may help to run the reset command.

$ reset

In general it is advisable to use clear as it only clears the terminal screen whereas reset reinitialises the
terminal.

4.11 Copying and renaming files
You want to store a copy of your human_uniprot_id.txt file in a backup directory.

For this exercise let us start by creating a backup directory.

$ mkdir backup

Now we can copy the file into the backup directory using the cp command.

$ cp human_uniprot_id.txt backup/

The command above uses the original name of the file. However, we could have given it a different name,
for example including the date.

$ cp human_uniprot_id.txt backup/human_uniprot_id_2015-11-10.txt

Finally, suppose that one wanted to rename the original file to use hyphens rather than under scores. To to
this one would use the mv command, mnemonic move.

$ mv human_uniprot_id.txt human-uniprot-id.txt

4.12 Removing files and directories
Having experimented with the command line we want to clean up by removing unwanted files and directo-
ries.

One can remove files using the rm command:

$ rm backup/human_uniprot_id.txt

Empty directories can be removed using the rmdir command:

4.10. Clearing the terminal window 21

The Biologist’s Guide to Computing, Release 0.9.1

$ mkdir empty
$ rmdir empty

To remove directories with files in them one can use the rm command with the recursive option:

$ rm -r backup

Warning: Think twice before deleting files, they will be deleted permanently. When using rm there is no
such thing as recycle bin from which the files can be recovered.

4.13 Key concepts
• The command line is an excellent tool for automating repetitive tasks

• A terminal application provides access to a shell

• A shell allows you to interact with the operating system’s services and programs

• The most commonly used shell is Bash

• Pipes can be used to combine different programs into more complicated work flows

• In general it is better to create small tools that do one thing well

• Think twice before deleting files

• Use the -help option to understand a command and its options

22 Chapter 4. First steps towards automation

CHAPTER5

Structuring and storing data

The biological sciences are becoming more and more data driven. However, dealing with large volumes of
data can feel overwhelming. One way to regain some control is to ensure that there is some structure to the
data. This chapter introduces important data structures and file formats for representing them.

5.1 Data structures
In How to think like a computer (page 5) we introduced some basic data types, including integers, floating
point numbers, characters and strings. However, most of the time we are not interested in individual in-
stances of integers or floating point values, we want to analyse lots of data points, often of a heterogeneous
nature.

We need some way of structuring our data. In computing there are several well defined data structures for
accomplishing this. Three data structures of particular interest are lists, dictionaries and graphs. Lists and
dictionaries are generally useful and graphs are of particular interest in biology and chemistry.

A list, also known as an array, is basically a collection of elements in a specific order. The most common use
case is to simply go through all the elements in a list and do something with them. For example if you had a
stack of Petri dishes you might go through them, one-by-one, and only keep the ones that had single colonies
suitable for picking. This is similar to what we did with the FASTA file in First steps towards automation
(page 13), where we only retained the lines contain the expression “OS=Homo sapiens”.

Because lists have an order associated with them they can also be used to implement different types of
queuing behaviour such as “first-in-first-out” and “first-in-last-out”. Furthermore, individual elements can
usually be accessed through their numerical indices. This also means that you can sort lists. For example
you could stack your Petri dishes based on the number of colonies in each one. Below is some pseudo code
illustrating how a bunch of petri dish identifiers could be stored as a list.

petri_dishes = ["wt_control",
"wt_treated",
"mutant1_control",
"mutant1_treated",
"mutant2_control",
"mutant2_treated"]

In Python one can access the third element ("mutant1_control") using the syntax petri_dishes[2]. Note
that index used is 2, rather than 3. This is because Python uses zero-based indexing, i.e. the first element of
the list would be accessed using index zero, the third element therefore has index two.

23

The Biologist’s Guide to Computing, Release 0.9.1

Zero vs one-based indexing

In many programming languages (C, C++, JavaScript, Perl, Python, to name a few) lists use a zero-
based indexing scheme. In other words the first element of the list is accessed using the index 0, the
second using index 1, etc. However, be warned, this is by no means a universal rule as many languages
use a one-based indexing scheme, example include Awk, Fortran, Mathematica, Matlab.

A dictionary, also known as a map or an associative array, is an unordered collection of elements that can
be accessed through their associated identifiers. In other words each entry in a dictionary has a key, the
identifier, and a value. For example, suppose that you needed to store information about the speed of
various animals. In this case it would make a lot of sense to have a system where you could look up the
speed information based on the animal’s name.

animal_speed = {"cheeta": 120,
"ostrich": 70,
"cat": 30,
"antelope": 88}

In Python one could look up the speed of an ostrich using the syntax animal_speed["ostrich"].

It is worth noting that it is possible to create nested data structures. For example, think of a spreadsheet.
The spreadsheet could be represented as a list containing lists. In other words the elements of the outer list
would represent the rows in the spreadsheet and the elements in an inner list would represent values of cells
at different columns for a specific row.

Let’s illustrate this using the table below.

Time Height Weight
0 0 0
5 2 5
10 7 12
15 8 20

The table, excluding the header, could be represented using a list of lists.

table = [[0, 0, 0],
[5, 2, 5],
[10, 7, 12],
[15, 8, 20]]

A graph, sometimes known as a tree, is a data structure that links nodes together via edges (Fig. 5.1).
This should sound relatively familiar to you as it is the basic concept behind phylogenetic trees. Each node
represents a species and the edges represent the inferred evolutionary relationships between the species.
Graphs are also used to represent 2D connectivities of molecules. Because of their general utility lists and
dictionaries are built-in to many high level programming languages such as Python and JavaScript. However,
data structures for graphs are generally not.

5.2 Data persistence
Suppose that your program has generated a phylogenetic tree and it has used this tree to determine that
scientists and baboons are more closely related than expected. Result! At this point the program is about to
finish. What should happen to the phylogenetic tree? Should it be discarded or should it be stored for future
use? If you want to store data for future use you need to save the data to disk.

14https://commons.wikimedia.org/wiki/File:CollapsedtreeLabels-simplified.svg
15https://commons.wikimedia.org/wiki/File:Aspirin-skeletal.svg

24 Chapter 5. Structuring and storing data

The Biologist’s Guide to Computing, Release 0.9.1

Fig. 5.1: Two examples of graphs: a phylogentic tree (A) and the chemical structure of Aspirin (B). Original
images via Wikimeda Commons [Public domain] A14 and B15.

When you want to save data to disk you have a choice: you can save the data in a binary format that only
your program understands or you can save the data as a plain text file. Storing your data in a binary format
has advantages in that the resulting files will be smaller and they will load quicker than a plain text file.
However, in the next section you will find out why you should (almost) always store your data as plain text
files.

5.3 The beauty of plain text files
Plain text files have several advantages over binary format files. First of all you can open and edit them on
any computer. The operating system does not matter as ASCII and Unicode are universal standards. With
the slight caveat that you may occasionally have to deal with converting between Windows and Unix line
endings (as discussed earlier in How to think like a computer (page 5)).

Furthermore, they are easy to use. You can simply open them in your text editor of choice and start typing
away.

Some software companies try to employ a lock-in strategy where their software produces files in a proprietary,
binary format. Meaning that you need access to the software in order to open the files produced using it.
This is not great from the users point of view. It makes it difficult to use other tools to further analyse the
data. It also makes it hard to share data with people that do not have a licence to the software in question.
Making use of plain text files and software that can output data in plain text works around this problem.

Finally, there is a rich ecosystem of tools available for working with plain text files. Apart from text editors,
there are all of the Unix command line tools. We looked at some of these in First steps towards automation
(page 13). In the next chapter, Keeping track of your work (page 31), we will look at a tool called git that
can be used to track changes to plain text files.

5.4 Useful plain text file formats
There are many well established file formats for representing data in plain text. These have arisen to solve
different types of problems.

5.3. The beauty of plain text files 25

https://commons.wikimedia.org/wiki/File:CollapsedtreeLabels-simplified.svg
https://commons.wikimedia.org/wiki/File:Aspirin-skeletal.svg

The Biologist’s Guide to Computing, Release 0.9.1

Plain text files are commonly used to store notes, for example the minutes of a meeting or a list of ideas.
When writing these types of documents one wants to be able to make use of headers, bullet points etc. A
popular file format for creating such documents is markdown16. Markdown (MD) provides a simple way
to add formatting such as headers and bullet lists by providing a set of rules of for how certain plain text
constructs should be converted to HTML and other document formats.

Level 1 header

Level 2 header

Here is some text in a paragraph.
It is possible to *emphasize words with italic*.
It is also possible to **strongly emphansize words in bold**.

- First item in a bullet list
- Second item in a bullet list

1. First item in a numbered list
2. Second item in a numbered list

[Link to BBC website](www.bbc.com)

![example image](path/to/example/image.png)

Hopefully the example above is self explanatory. For more information have a look at the official markdown
syntax page17.

Markdown specific text editors

There are many markdown specific text editors available. For Mac users a good option is Mour, for
Linux (and Windows) users an option is MDCharms.

r http://25.io/mou/
s http://www.mdcharm.com/

Another scenario is to record tabular data, for example the results of a scientific experiment. In other words
the type of data you would want to store in a spreadsheet. Comma Separated Value (CSV) files are ideally
suited for this. This file format is relatively basic, values are simply separated by commas and the file can
optionally start with a header. It is worth noting that you can include a comma in a value by surrounding it
by double quotes. Below is an example of a three column CSV file containing a header and two data rows.

Last name,First name(s),Age
Smith,Alice,34
Smith,"Bob, Carter",56

Another scenario, when coding, is the ability to store richer data structures, such as lists or dictionaries, pos-
sibly nested within each other. There are two popular file formats for doing this JavaScript Object Notation20

(JSON) and YAML Ain’t Markup a Language21 (YAML).

16 https://daringfireball.net/projects/markdown/
17 https://daringfireball.net/projects/markdown/syntax
20 http://www.json.org/
21 http://www.yaml.org/

26 Chapter 5. Structuring and storing data

https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/syntax
https://daringfireball.net/projects/markdown/syntax
http://25.io/mou/
http://www.mdcharm.com/
http://www.json.org/
http://www.yaml.org/

The Biologist’s Guide to Computing, Release 0.9.1

Recursive acronyms

You may ask yourself why the full name of YAML includes the word YAML. This is because programmers
are fond of recursion, procedures whose implementation call themselves. YAML is a so called recursive
acronym, i.e. the acronym “calls” itself. Other famous recursive acronyms include GNU (GNU’s Not
Unix), curl (C URL Request Library) and Fiji (Fiji Is Just ImageJ).

JSON was designed to be easy for machines to generate and parse and is used extensively in web applications
as it can be directly converted to JavaScript objects. Below is an example of JSON representing a list of
scientific discoveries, where each discovery contains a set of key value pairs.

[
{

"year": 1653,
"scientist": "Robert Hooke",
"experiment": "light microscopy",
"discovery": "cells"

},
{

"year": 1944,
"scientist": "Barbara McClintock",
"experiment": "breeding maize plants for colour",
"discovery": "jumping genes"

}
]

What does it mean to “parse” a file?

Parsing basically means reading a piece of text and resolving it into syntactic parts. For example an
English grammar parser might resolve the text “The large cat sat on the red hat” into nouns (cat, hat)
and verbs (sat) and adjectives (large, red). In the context of parsing JSON and YAML files we are
resolving the text into types such as integers and strings as well as higher level data structures such as
lists and dictionaries.

YAML is similar to JSON in that it is a data serialisation standard. However, it places more focus on being
human readable. Below is the same data structure represented using YAML.

-

year: 1653
scientist: "Robert Hooke"
experiment: "light microscopy"
discovery: "cells"

-
year: 1944
scientist: "Barbara McClintock"
experiment: "breeding maize plants for colour"
discovery: "jumping genes"

A nice feature of YAML is the ability to add comments to the data giving further explanation to the reader.
These comments are ignored by programs parsing the files.

TODO: include an entry for Anton van Leeuwenhoek here.
-

year: 1653
scientist: "Robert Hooke"

5.4. Useful plain text file formats 27

The Biologist’s Guide to Computing, Release 0.9.1

experiment: "light microscopy"
discovery: "cells"

-
year: 1944
scientist: "Barbara McClintock"
experiment: "breeding maize plants for colour"
discovery: "jumping genes"

Comments

Comments are a common feature of most programming languages. They allow the programmer to
explain the intention of the code and to make generic notes for future reference.
Comments begin with a program-specific character, or sequence of characters, in the example above
the hash (#) symbol. In some languages comments require a closing sequence as well, for example a
comment in HTML begins with <!-- and ends with -->.

As scientist’s we sometimes need to be able to work with graph data, for example phylogenetic trees and
molecules. These often have their own domain specific plain text file formats. For example the Newick for-
mat22 is commonly used to store phylogenetic trees and there are a multitude of file formats for representing
molecules including the SMILES23, and Molfile24 file formats.

A neat file format for storing and visualising generic graph data is the DOT language25. Plain text files
written in the DOT language can be visualised using the software Graphviz26.

Some figures are well suited for being stored as plain text files. This is the case when all the content of the
graphic can be described as mathematical functions. These are so called vector graphics and the standard
file format for storing them as plain text files is Scalable Vector Graphics27. A neat feature of these types of
images is that they can be arbitrarily scaled to different sizes without losing any resolution. Hence the word
“scalable” in their name.

However, there is another type of graphic that is ill suited to being represented as plain text files. These
are so called raster images. In raster images the graphic is represented as a grid where each grid point
is set to a certain intensity. Common file formats include PNG, JPEG, and GIF. If you are dealing with
photographs or microscopy images the raw data will be recorded in raster form. The reason for storing
these types of images as binary blobs, rather than plain text files, is that it saves a significant amount of disk
space. Furthermore, image viewers can load these binary blobs much quicker than they could load the same
amount of information stored as a plain text file.

However, suppose you needed to generate a figure as a raster image, say for example a scatter plot. Then
you should consider writing a script to generate the figure. The instructions for generating the figure, i.e. the
script, can then be stored as a plain text file. This concept will be explored in Data visualisation (page 61).

5.5 Tidy data
In the Data visualisation (page 61) chapter we will make use of the ggplot2 package. This requires data to
be structured as Tidy Data28, where each variable is a column and each observation is a row and each type
of observational unit forms a table.

22 https://en.wikipedia.org/wiki/Newick_format
23 https://en.wikipedia.org/wiki/Simplified_molecular-input_line-entry_system
24 https://en.wikipedia.org/wiki/Chemical_table_file
25 http://www.graphviz.org/content/dot-language
26 http://www.graphviz.org/
27 https://en.wikipedia.org/wiki/Scalable_Vector_Graphics
28 http://vita.had.co.nz/papers/tidy-data.pdf

28 Chapter 5. Structuring and storing data

https://en.wikipedia.org/wiki/Newick_format
https://en.wikipedia.org/wiki/Newick_format
https://en.wikipedia.org/wiki/Simplified_molecular-input_line-entry_system
https://en.wikipedia.org/wiki/Chemical_table_file
http://www.graphviz.org/content/dot-language
http://www.graphviz.org/
https://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://vita.had.co.nz/papers/tidy-data.pdf

The Biologist’s Guide to Computing, Release 0.9.1

Take for example the table below.

Control Heat shock
Wild type 3 15
Mutant 5 16

This data would be classified as “messy” because each row contains two observations, i.e. the control and
the heat shock experiments. To reorganise the data so that it becomes tidy we need to “melt” or stack it.

Variant Experiment Result
Wild type Control 3
Wild type Heat shock 15
Mutant Control 5
Mutant Heat shock 16

The benefit of structuring your data in a tidy fashion is that it makes it easier to work with when you want
to visualise and analyse it.

5.6 Find a good text editor and learn how to use it
A key step to boost your productivity is to find a text editor that suits you, and learning how to make the
most of it.

Popular text editors include Sublime Text29, Geany30 and Atom31. I would recommend trying out at least
two of them and doing some of your own research into text editors. Editing text files will be a core activity
throughout the rest of this book and you want to be working with a text editor that makes you happy!

If you enjoy working on the command line I would highly recommend experimenting with command line
text editors. Popular choices include nano32, emacs33 and vim34. The former is easy to learn, whereas the
latter two give much more power, but are more difficult to learn.

Vim is great!

Personally, I use vim for everything. It is one of a few editors that is installed by default on most
Unix based system. Furthermore, it is extremely powerful and allows you to do everything using the
keyboard. I like this because using the mouse for extended periods of time makes my index finger hurt.
If you have half an hour to spare I highly recommend that you try running the vimtutor command in a
terminal.

5.7 Key concepts
• Lists, also known as arrays, are ordered collections of elements

• Dictionaries, also known as maps and associative arrays, are unordered collections of key-value pairs

• Graphs, sometimes known as trees, links nodes via edges and are of relevance to phylogenetic trees
and molecular representations

29 http://www.sublimetext.com/
30 http://www.geany.org/Main/HomePage
31 https://atom.io/
32 http://www.nano-editor.org/
33 https://www.gnu.org/software/emacs/
34 http://www.vim.org/

5.6. Find a good text editor and learn how to use it 29

http://www.sublimetext.com/
http://www.geany.org/Main/HomePage
https://atom.io/
http://www.nano-editor.org/
https://www.gnu.org/software/emacs/
http://www.vim.org/

The Biologist’s Guide to Computing, Release 0.9.1

• In computing persistence refers to data outliving the program that generated it

• If you want any data structures that you have generated to persist you need to write them to disk

• Saving your data as plain text files is almost always preferable to saving it as a binary blob

• There are a number of useful plain text file formats for you to make use of

• Don’t invent your own file format

• Structuring your data in a “tidy” fashion will make it easier to analyse and visualise

• Learn how to make the most out of your text editor of choice

30 Chapter 5. Structuring and storing data

CHAPTER6

Keeping track of your work

You are probably used to keeping a record of your experimental work in either physical or electronic lab
notebooks. These provide a valuable audit trail and form part of the process that makes your research
reproducible.

However, keeping track of ones work when developing data analysis scripts present different types of chal-
lenges from keeping track of laboratory work.

When developing scripts it is often beneficial to build them up one step at a time, adding functionality as
one goes along. However, as scripts become more complex one often accidentally breaks them whilst trying
to add more functionality. To make things worse it can often be difficult to remember what changes were
introduced since the last working state of the code.

Because this is a problem that software engineers have been faced with for a long time there are now some
excellent tools for dealing with it. The solution is to use a version control system. Here we will use Git, one
of the most popular version control systems, to keep track of our work. In its most basic form you can think
of Git as a tool for providing you with an infinite undo-button.

6.1 What is Git?
Git is a version control system. That means that it allows you to track changes made to files over time
by taking snapshots. Furthermore it allows you to view differences between snapshots and revert back to
previous snapshots. In fact Git can do a lot more than this, but this is all we need to know for this chapter.
We will go into more detail on the collaborative aspects of Git in the Collaborating on projects (page 83)
chapter.

Git tracks snapshots of files in what is called a repository. You can have many Git repositories. On my com-
puter I have a directory named projects that currently contains around fifty sub-directories representing the
projects that I have been working on recently. Each one of these sub-directories is a separate Git repository.

Git can track some or all of the files in a repository. The files can be located in the top level directory or in
sub-directories. However, Git cannot track any files that live in parent directories of the base Git repository,
e.g. none of my Git repositories can track files located in the parent projects directory.

In a Git repository files can be in one of four states: untracked, staged, unmodified and modified. When a
file is initially created it is in an untracked state, meaning that it is not yet under version control. To start
tracking the file one adds it to Git, and the state of the file then changes to staged. This means that the file is
staged to be included in the next snapshot. Multiple files can be in a staged state when one takes a snapshot.
To take a snapshot one commits all the files that are in the so called “staging area”. The state of the files then
changes from staged to unmodified, see figure Fig. 6.1.

31

The Biologist’s Guide to Computing, Release 0.9.1

Any subsequent editing of the files under version control would result in their state changing from unmod-
ified to modified. When one is happy with the edits made one would then add the files to the staging area
and their state would change from modified to staged. At that point one is ready to take another snapshot
by committing the staged edits. The state of the files then, again, change from staged to unmodified. And
the cycle continues (Fig. 6.1).

Fig. 6.1: Diagram illustrating the states a file can have in a Git repository. The commands git add and git
commit are the key components to creating a snapshot. The vim command symbolises editing the file using
the vim text editor, but any program altering the content of the file will result in the file being marked as
modified by Git.

6.2 First time configuration of Git
Git may or may not be installed by default on your system. To find out if it is try running the command
below.

$ git --version

If Git is installed you will see output along the lines of the below.

git version 2.6.3

32 Chapter 6. Keeping track of your work

The Biologist’s Guide to Computing, Release 0.9.1

If Git is not installed you will see a command not found message. In this case you will need to install it. If
you do not know how to do this you can find general instructions on how to install software in Managing
your system (page 137).

Although we won’t go into it in this chapter, Git is fundamentally a collaboration tool that helps people work
on projects together. This means that we need to give Git some information about us for it to be able to keep
track of who has done what, specifically our name and email address.

$ git config --global user.name "Tjelvar Olsson"
$ git config --global user.email "tjelvar@biologistsguide2computing.com"

We will look at the collaboration aspect of git in the Collaborating on projects (page 83) chapter.

6.3 Initialise the project
The first thing to do is to initialise the project using the git init command. If run with no argument it will
set up tracking of files in the current working directory. If given an argument, such as protein-count, git
will create a new directory with this name and set up tracking of files within it.

git init protein-count
cd protein-count/

What does init mean?

In computing the term init is often used to abbreviate the word “initialise”, i.e a one time event that
results in the creation of a new entity.

Use your editor of choice and create the markdown file README.md and add the content below to it.

Protein count

Count the number of proteins of particular species
in a SwissProt FASTA file.

As mentioned, files in a Git repository, the project directory, can be in one of four states: untracked, unmod-
ified, modified and staged. To view the state one can use the command git status.

$ git status

The command below produces the output below.

On branch master

Initial commit

Untracked files:
(use "git add <file>..." to include in what will be committed)

README.md

nothing added to commit but untracked files present (use "git add" to track)

This tells us that the README.md file is untracked, in other words it is not yet under version control in Git.
However, we would like to track it, so we add it to the Git repository using the git add command.

6.3. Initialise the project 33

The Biologist’s Guide to Computing, Release 0.9.1

$ git add README.md

Let’s see how this affected the status of the repository.

$ git status
On branch master

Initial commit

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: README.md

This stages the README.md file to be committed. To commit the current snapshot of the project to the Git
repository we use the git commit command.

$ git commit -m "Added readme file."
[master (root-commit) e1dc880] Added readme file.
1 file changed, 12 insertions(+)
create mode 100644 README.md

In the above the -m option allows us to specify a commit message on the command line. The commit message
should describe the change that your are committing. It will be useful when you review the project at a later
date. It also helps communicate your change to any collaborators working on the same project.

Again, let’s see how this affected the status of the repository.

$ git status
On branch master
nothing to commit, working directory clean

That’s all you need to know to get started with Git. Start by initialising a project using git init. Then use
git add and git commit iteratively to stage and commit snapshots of your project to version control.

6.4 Create a script for downloading the SwissProt FASTA file
We will now convert the command we used to download the SwissProt FASTA file from First steps towards
automation (page 13) into a script. To add some organisation we will put this script in a directory named
scripts. We will also create a directory named data for storing the downloaded file. By specifying more
than one argument to the mkdir command one can create multiple directories.

$ mkdir scripts data

Using your favorite text editor enter the text below into the file scripts/get_data.bash.

#!/bin/bash

curl --location --output data/uniprot_sprot.fasta.gz http://bit.ly/1l6SAKb

The only difference between this script and the command we entered on the command line is the first line
#!/bin/bash. This is a special construct, called the shebang, and is used to specify the shell to use when
executing the content of the file.

However, in order to be able to execute the file, i.e. run it as a program, it needs to have “execute per-
missions”. One can view the current set of permissions of a file by using ls -l (mnemonics ls list, -l
long).

34 Chapter 6. Keeping track of your work

The Biologist’s Guide to Computing, Release 0.9.1

$ ls -l scripts/get_data.bash
-rw-r--r-- 1 olssont 1340193827 88 29 Nov 10:45 scripts/get_data.bash

Note the first ten characters, the first specifies the file type and the remaining nine relate to the permissions of
the file, see Fig. 6.2. There are three modes that can be turned on or off: read (r), write (w) and execute (x).
Furthermore, these can be specified for the owner (u), group (g) and all users (a or o). The nine characters
above state that the owner has read and write permissions on the file rw-, whereas both the group and all
other users only have permission to read the file r--.

Fig. 6.2: Figure illustrating how the file permissions string should be interpreted. In the above the user
has read, write and execute permissions. The members of the group have read and exectue permissions. All
other users only have execute permissions on the file. In this case the file type character - indicates that
the file is a regular/executable file. Other file type characters include d and l which are used to represent
directories and symbolic links respectively.

What is a symbolic link?

The legend of Fig. 6.2 mentioned symbolic links. A symbolic link is a special type of file that points at
another file. These can for example be used to create references to canonical representations of your
data.

Let’s take a moment to expand on the concept of groups in Unix-like operating systems. A user can be
part of several groups. However, a file can only belong to one group. For example a PhD student could
be part of the groups famous-project-leader-group and awesome-institute-group. In this hypothetical
scenario the default group for the PhD student is the famous-project-leader-group. Any files that the
student generates would therefore be assigned the group famous-project-leader-group. If the student
wanted to make a file more widely accessible throughout the institute they could change the file’s group to
awesome-institute-group.

Let us give the file execute permissions. This is achieved using the chmod command, mnemonic “change
file modes”. The chmod command can be invoked in a number of different ways. Here we use the sym-
bolic mode to specify that the user and the group (ug) should be given execute permissions (+x) on the
scripts/get_data.bash file.

$ chmod ug+x scripts/get_data.bash
$ ls -l scripts/get_data.bash
-rwxr-xr-- 1 olssont 1340193827 88 29 Nov 10:45 scripts/get_data.bash

Let us test the script by running it.

$./scripts/get_data.bash
$ ls data/
uniprot_sprot.fasta.gz

The file was downloaded to the data directory, success!

6.4. Create a script for downloading the SwissProt FASTA file 35

The Biologist’s Guide to Computing, Release 0.9.1

This is a good time to add the script to version control.

$ git add scripts/get_data.bash
$ git commit -m "Added script for downloading SwissProt FASTA file."
[master f80731e] Added script for downloading SwissProt FASTA file.
1 file changed, 3 insertions(+)
create mode 100755 scripts/get_data.bash

Let us check the status of our project.

$ git status
On branch master
Untracked files:

(use "git add <file>..." to include in what will be committed)

data/

nothing added to commit but untracked files present (use "git add" to track)

Git is telling us that there are files in the data directory that are currently not being tracked. However, in
this project the data directory will contain files downloaded from a canonical resource and as the download
script is in version control we do not need or want to track the files in this directory.

It is possible to tell Git to ignore files. Using your text editor of choice create the file .gitignore and add the
content below to it.

Hidden files

On Unix-like systems dot-files, files starting with a ”.”, are treated as hidden files. These files are usually
used to store configuration settings. The ~/.bashrc file, for example, is used to configure your Bash
shell environment. To list hidden files use ls -a.

data/*

In Bash the * symbol represents a wild card pattern that can match any string. The * symbol can be used in
the same fashion in the .gitignore file. As such the line we added to our .gitignore file tells Git to ignore
all files in the data directory.

$ git status
On branch master
Untracked files:

(use "git add <file>..." to include in what will be committed)

.gitignore

nothing added to commit but untracked files present (use "git add" to track)

Git now ignores the content of the data directory and tells us that the .gitignore file is untracked. Let us
add this file.

$ git add .gitignore
$ git commit -m "Added gitignore file."
$ git status
On branch master
nothing to commit, working directory clean

36 Chapter 6. Keeping track of your work

The Biologist’s Guide to Computing, Release 0.9.1

6.5 Improve script for downloading SwissProt FASTA file
However, the current setup has got an issue in terms of reproducibility. Depending on when the SwissProt
FASTA file was downloaded one may obtain different results. It would therefore be useful to include the date
of access in the file name. This can be achieved using the date command.

$ date
Thu 26 Nov 2015 09:20:32 GMT

The date command can be configured to create custom output formats using the + symbol followed by a
string template specifying the desired format. In the below %Y, %m and %d will be replaced by the year, month
and day respectively.

$ date +'%Y-%m-%d'
2015-11-26

To get the output of the date command into the file name one can use Bash’s concept of command substitu-
tion. Command substitution makes it possible to evaluate the result of a command within a string. To see
this in action we can use the echo command, which simply prints out the string that it is given.

$ echo "Today it is $(date +'%d')th"
Today it is 26th

It is time to introduce the concept of a variable. A variable is basically a means of storing a piece of informa-
tion using a descriptive name. In bash one can assign a variable using the equals character (=). Below we
create a variable named PRIBNOV_BOX and assign it the value TATAAT.

$ PRIBNOV_BOX="TATAAT"

The value of the variable can then be accessed by prefixing the variable name with the dollar character ($).

$ echo $PRIBNOV_BOX
TATAAT

Don’t Repeat Yourself

The use of variables is a key concept in programming. It allows programmers to avoid having to repeat
themselves. This is important as repetition increases the chances of introducing errors. Suppose, for
example that you had a scaling factor of 1.35611 that you used at ten different places in your script.
That presents ten opportunities for typing in the wrong number. Further, suppose that you, later on,
needed to change the scaling factor. That presents ten opportunities for forgetting to update a value
and another ten opportunities for mistyping the value. In this case it would have been better to create a
variable named scaling_factor and use that variable in the ten places in your script. That way they are
guaranteed to be the same value and you only need to edit one line if you need to change the value. In
programming avoiding repetition is important enough to warrant it’s own acronym DRY (Don’t Repeat
Yourself).

We now have all the information we need to improve the script. Edit the script/get_data.bash file to look
like the below.

#!/bin/bash

FNAME="data/uniprot_sprot.$(date +'%Y-%m-%d').fasta.gz"
curl --location --output $FNAME http://bit.ly/1l6SAKb

Let’s try running the script.

6.5. Improve script for downloading SwissProt FASTA file 37

The Biologist’s Guide to Computing, Release 0.9.1

$./scripts/get_data.bash

Now we can check that the script has produced an appropriately named file.

$ ls data/
uniprot_sprot.2015-11-26.fasta.gz uniprot_sprot.fasta.gz

We have added a piece of functionality and have tested that it works as expected. This is a good time to
commit our changes to Git. However, before we do that let us examine the changes to the project since the
last commit using the git diff command.

$ git diff
diff --git a/scripts/get_data.bash b/scripts/get_data.bash
index d8e9bda..338d82c 100755
--- a/scripts/get_data.bash
+++ b/scripts/get_data.bash
@@ -1,3 +1,4 @@
#!/bin/bash

-curl --location --output data/uniprot_sprot.fasta.gz http://bit.ly/1l6SAKb
+FNAME="data/uniprot_sprot.$(date +'%Y-%m-%d').fasta.gz"
+curl --location --output $FNAME http://bit.ly/1l6SAKb

The command above tells us that one line has been removed, the one prefixed by a minus sign, and that two
lines have been added, the ones prefixed by a plus sign. In fact we have modified one line and added one,
but the effect is the same.

Let us now add and commit the changes to Git. We need to do this as working with Git is a cyclical process.
You make changes by editing the files, you add the changes that you want to snapshot to the staging area,
then you commit the staged changes. At this point the cycle starts all over again Fig. 6.1.

$ git add scripts/get_data.bash
$ git commit -m "Updated download script to include date in file name."
[master 7512894] Updated download script to include date in file name.
1 file changed, 2 insertions(+), 1 deletion(-)

By adding the date of download to the file name reproducibility is improved and it means that we can
download the file on different dates and ensure that no data is overwritten.

However, it is still possible to accidentally delete or modify the data file. To overcome this, and further
improve reproducibility, it is good practise to give the data file read-only permissions. This means that the
file cannot be modified or deleted, only read. To do this we will make use of the chmod command. In this
instance we will make use of an absolute mode. Absolute modes encode the permissions using the numbers
1, 2 and 4 that represent execute, write and read modes respectively. These numbers can be combined to
create any permission, for example 7 represents read, write and execute permissions and 5 represents read
and execute permissions.

Value Permission
1 execute
2 write
3 write & execute
4 read
5 read & execute
6 read & write
7 read & write & execute

To set the permissions for the owner, group and all other users one simply uses three such numbers. For ex-
ample to give the owner read and write permissions and the group and all other users read-only permissions

38 Chapter 6. Keeping track of your work

The Biologist’s Guide to Computing, Release 0.9.1

one would use the absolute mode 644.

In this instance we want to set the file to read-only for the owner, group and all other users so we will use
the absolute mode 444.

#!/bin/bash

FNAME="data/uniprot_sprot.$(date +'%Y-%m-%d').fasta.gz"
curl --location --output $FNAME http://bit.ly/1l6SAKb
chmod 444 $FNAME

If you run the script now you will see that it changes the permissions of the downloaded file. If you run the
script again, on the same day, you will notice that the it complains that it has not got permissions to write to
the file. This is expected as the curl command is wanting to overwrite the existing read-only file.

Let’s add these changes to the staging area.

$ git add scripts/get_data.bash

It is good practise to try to make the commit message no more than 50 characters long. Sometimes this is
not enough. In these cases you can create a multi line commit message using a text editor (likely to be vim
by default) by omitting the -m flag.

Let’s try this now.

$ git commit

This should open a text editor with the text below.

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
On branch master
Changes to be committed:
modified: scripts/get_data.bash

Use your text editor to edit this message to the below.

Set permissions of data file to read only

The intention of this change is to prevent accidental deletion or
modification of the raw data file.

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
On branch master
Changes to be committed:
modified: scripts/get_data.bash

When you save the file you should see the output below in the terminal.

$ git commit
[master ad2a4c5] Set permissions of data file to read only
1 file changed, 1 insertion(+)

6.5. Improve script for downloading SwissProt FASTA file 39

The Biologist’s Guide to Computing, Release 0.9.1

Help! I’m stuck in Vim.

If you tried out the git commit command you may depeding on the configuration of your computer get
thrown into Vim. If you don’t know how to use Vim, it can be tricky just to get out of it.

1. Press the Esc key. This ensure that you are in “normal” mode.
2. Press the colon (:) key. This puts you in “command-line” mode.
3. Enter the text q!. This is the command to quit (q) without saving (!).
4. Press the Enter key. This executes the command from step 3.

What if I want to edit or delete a file that is read only?

In this case you first need to change the mode of the file so that you have write permissions to it. This
is achieved using the chmod command, for example:

$ chmod u+w file_i_want_to_edit.txt

6.6 Create script for counting the number of proteins in a genome
Now that we have a script for downloading the SwissProt FASTA file let us convert what we learnt in First
steps towards automation (page 13) into a script for counting the number of proteins for a particular species.

Add the lines below to the file scripts/protein_count.bash.

#!/bin/bash

gunzip -c data/uniprot_sprot.fasta.gz | grep 'OS=Homo sapiens' \
| cut -d '|' -f 2 | wc -l

Make the file executable and test the script.

$ chmod +x scripts/protein_count.bash
$./scripts/protein_count.bash

20194

At the moment the path to the data file and the species are hard coded into the script. It would be nice if we
could turn these two parameters into command line arguments. We can do this using the special variables
$1 and $2 that represent the first and second command line arguments, respectively.

#!/bin/bash

DATA_FILE_PATH=$1
SPECIES=$2
echo "Input file: $DATA_FILE_PATH"
echo "Species: $SPECIES"

gunzip -c $DATA_FILE_PATH | grep "OS=$SPECIES" \
| cut -d '|' -f 2 | wc -l

40 Chapter 6. Keeping track of your work

The Biologist’s Guide to Computing, Release 0.9.1

Warning: Bash makes a distinction between single and double quotes. To expand variables one needs to
use double quotes. If not one will get the literal value of the string within the single quotes. For example,
the command echo ’Species: $SPECIES’ would print the literal string Species: $SPECIES.

$ SPECIES=H.sapiens
$ echo "Species: $SPECIES"
Species: H.sapiens
$ echo 'Species: $SPECIES'
Species: $SPECIES

This is a good point to test if things are working as expected.

$./scripts/protein_count.bash data/uniprot_sprot.2015-11-26.fasta.gz "Homo sapiens"
Input file: data/uniprot_sprot.2015-11-26.fasta.gz
Species: Homo sapiens

20194

Success! Let us add and commit the script to Git.

$ git add scripts/protein_count.bash
$ git commit -m "Added script for counting the numbers of proteins."
[master b9de9bc] Added script for counting the numbers of proteins.
1 file changed, 9 insertions(+)
create mode 100755 scripts/protein_count.bash

6.7 More useful git commands
We’ve covered a lot of ground in this chapter. Can you remember everything that we did and the motivation
behind each individual step? If not, that is okay, we can use Git to remind us using the git log command.

$ git log --oneline
b9de9bc Added script for counting the numbers of proteins.
a672257 Added command to set permissions of data file to read only.
7512894 Updated download script to include date in file name.
6c6f65b Added gitignore file.
f80731e Added script for downloading SwissProt FASTA file.
e1dc880 Added readme file.

Note that the comments above give a decent description of what was done. However, it would have been
useful to include more information about the motive behind some changes. If one does not make use of
the -m argument when using git commit one can use the default text editor to write a more comprehensive
commit message. For example, a more informative commit message for commit a672257 could have looked
something along the lines of:

Added command to set permissions of data file to read only.

The intention of this change is to prevent accidental deletion or
modification of the raw data file.

Another useful feature of Git is that it allows us to inspect the changes between commits using the git diff
command. For example to understand what changed in commit a672257 we can compare it to the previous
commit 7512894.

$ git diff 7512894 a672257
diff --git a/scripts/get_data.bash b/scripts/get_data.bash

6.7. More useful git commands 41

The Biologist’s Guide to Computing, Release 0.9.1

index 338d82c..0bbc17b 100755
--- a/scripts/get_data.bash
+++ b/scripts/get_data.bash
@@ -2,3 +2,4 @@

FNAME="data/uniprot_sprot.$(date +'%Y-%m-%d').fasta.gz"
curl --location --output $FNAME http://bit.ly/1l6SAKb
+chmod 444 $FNAME

In the above we can see that we added the line chmod 444 $FNAME to the scripts/get_data.bash file.

6.8 Key concepts
• When working with files it is often desirable to be able to track changes

• When programming it is particularly useful to be able to save working states of the code

• This gives one the opportunity to roll back to a previously working state if things go wrong

• Git is a powerful version control system

• To get started with Git one only needs to get familiar with a handful of commands

• Use git init to initialise a Git repository

• Use git add file-to-add to start tracking a file in Git

• Use git commit -m "your summary message here" to record a snapshot in Git

• The overhead of using Git whilst programming is minimal

• The benefits of using Git are great

• Start using Git in your day-to-day work right now!

• On Unix-like systems files have write, read and execute permissions that can be turned on and off

• By making a file executable it can be run as an independent program

• By giving raw data files read only permissions one can ensure that they are not accidentally modified
or deleted

42 Chapter 6. Keeping track of your work

CHAPTER7

Data analysis

Streptomyces coelicolor is a soil-dwelling bacterium with a complex life-cycle involving mycelial growth and
sporulation. It is of particular interest in that it can produce a range of natural products of pharmaceutical
relevance. In fact it is the major source of natural antibiotics.

In 2002 the genome of Streptomyces coelicolor A3(2), the model actinomycete organism, was sequenced. In
this chapter we will do some basic bioinformatics on this genome to illustrate some fundamental concepts of
computer programming.

One feature of interest when examining DNA is the guanine-cytosine (GC) content. DNA with high GC-
content is more stable than DNA with low GC-content. The GC-content is defined as:

100 * 𝐺+ 𝐶

𝐴+ 𝑇 +𝐺+ 𝐶

To solve this problem we need to write code to be able to read in sequence data from a file, process the input
to calculate the local GC-content and write out the results to another file. In the process the computational
concepts of variables, functions and loops will be introduced.

In this chapter we will use the Python scripting language to perform our data analysis.

7.1 What is Python?
Python is a high-level scripting language that is growing in popularity in the scientific community. It uses a
syntax that is relatively easy to get to grips with and which encourages code readability.

7.2 Using Python in interactivemode
To start off with we will make use of Python using its interactive mode35, which means that we can type
Python commands straight into the terminal. In fact when working with Python in interactive mode one can
think of it as switching the terminal’s shell from Bash to Python.

To start Python in its interactive mode simply type python into the terminal.

$ python
Python 2.7.10 (default, Jul 14 2015, 19:46:27)
[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.39)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

35 https://docs.python.org/2/tutorial/interpreter.html#interactive-mode

43

https://docs.python.org/2/tutorial/interpreter.html#interactive-mode

The Biologist’s Guide to Computing, Release 0.9.1

Note that this prints out information about the version of Python that is being used and how it was compiled
before leaving you at the interactive prompt. In this instance I am using Python version 2.7.10.

The three greater than signs (>>>) represent the primary prompt into which commands can be entered.

>>> 1 + 2
3

The secondary prompt is represented by three dots (...) and denotes a continuation line.

>>> line = ">sp|Q6GZX4|001R_FRG3G Putative transcription factor 001R"
>>> if line.startswith(">"):
... print(line)
...
>sp|Q6GZX4|001R_FRG3G Putative transcription factor 001R

7.3 Variables
A variable is a means of storing a piece of information using using a descriptive name. The use of variables
is encouraged as it allows us to avoid having to repeat ourselves, the DRY principle.

In Python variables are assigned using the equals sign.

>>> pi = 3.14

When naming variables being explicit is more important than being succinct. One reason for this is that you
will spend more time reading your code than you will writing it. Avoiding the mental overhead of trying to
understand what all the acronyms mean is a good thing. For example, suppose that we wanted to create a
variable for storing the radius of a circle. Please avoid the temptation of naming the variable r, and go for
the longer but more explicit name radius.

>>> radius = 1.5

Note: Many modern text editors have auto complete functionality so longer variable names does not
necessarily need to mean that there is more typing required. Remember, spend time finding a text editor
that works well for you!

7.4 Determining the GC count of a sequence
Suppose that we had a string representing a DNA sequence.

>>> dna_string = "attagcgcaatctaactacactactgccgcgcggcatatatttaaatata"
>>> print(dna_string)
attagcgcaatctaactacactactgccgcgcggcatatatttaaatata

A string is a data type for representing text. As such it is not ideal for data processing purposes. In this case
the DNA sequence would be better represented using a list, with each item in the list representing a DNA
letter.

In Python we can convert a string into a list using the built-in list() function.

>>> dna_list = list(dna_string)
>>> print(dna_list)
['a', 't', 't', 'a', 'g', 'c', 'g', 'c', 'a', 'a', 't', 'c', 't', 'a', 'a',

44 Chapter 7. Data analysis

The Biologist’s Guide to Computing, Release 0.9.1

'c', 't', 'a', 'c', 'a', 'c', 't', 'a', 'c', 't', 'g', 'c', 'c', 'g', 'c',
'g', 'c', 'g', 'g', 'c', 'a', 't', 'a', 't', 'a', 't', 't', 't', 'a', 'a',
'a', 't', 'a', 't', 'a']

Python’s list class has got a method called count() that we can use to find out the counts of particular
elements in the list.

>>> dna_list.count("a")
17

To find out the total number of items in a list one can use Python’s built-in len() function, which returns the
length of the list.

>>> len(dna_list)
50

When using Python you need to be careful when dividing integers, because in Python 2 the default is to use
integer division, i.e. to discard the remainder.

>>> 3 / 2
1

One can work around this by ensuring that at least one of the numbers is represented using floating point.

>>> 3 / 2.0
1.5

Warning: In Python 3, the behaviour of the division operator has been changed, and dividing two
integers will result in normal division.

One can convert an integer to a floating point number using Python’s built-in float() function.

>>> float(2)
2.0

We now have all the information required to calculate the GC-content of the DNA sequence.

>>> gc_count = dna_list.count("g") + dna_list.count("c")
>>> gc_fraction = float(gc_count) / len(dna_list)
>>> 100 * gc_fraction
38.0

7.5 Creating reusable functions
Suppose that we wanted to calculate the GC-content for several sequences. In this case it would be very
annoying, and error prone, to have to enter the commands above into the Python shell manually for each se-
quence. Rather, it would be advantageous to be able to create a piece of code that could be called repeatedly
to calculate the GC-content. We can achieve this using the concept of functions. In other words functions
are a means for programmers to avoid repeating themselves, thus adhering to the DRY principle.

Let us create a simple function that adds two items together.

>>> def add(a, b):
... return a + b
...
>>> add(2, 3)
5

7.5. Creating reusable functions 45

The Biologist’s Guide to Computing, Release 0.9.1

In Python functions are defined using the def keyword. Note that the def keyword is followed by the name
of the function. The name of the function is followed by a parenthesized set of arguments, in this case the
function takes two arguments a and b. The end of the function definition is marked using a colon.

The body of the function, in this example the return statement, needs to be indented. The standard in
Python is to use four white spaces to indent code blocks. In this case the function body only contains one
line of code. However, a function can include several indented lines of code.

Warning: Whitespace really matters in Python! If your code is not correctly aligned you will see
IndentationError messages telling you that everything is not as it should be. You will also run into
IndentationError messages if you mix white spaces and tabs.

Now we can create a function for calculating the GC-content of a sequence. As with variables explicit trumps
succinct in terms of naming.

>>> def gc_content(sequence):
... gc_count = sequence.count("g") + sequence.count("c")
... gc_fraction = float(gc_count) / len(sequence)
... return 100 * gc_fraction
...
>>> gc_content(dna_list)
38.0

7.6 List slicing
Suppose that we wanted to look at local variability in GC-content. To achieve this we would like to be able
to select segments of our initial list. This is known as “slicing”, as in slicing up a salami.

In Python slicing uses a [start:end] syntax that is inclusive for the start index and exclusive for the end
index. To illustrate slicing let us first create a list to work with.

>>> zero_to_five = ["zero", "one", "two", "three", "four", "five"]

To get the first two elements we therefore use 0 for the start index, as Python uses a zero-based indexing
system, and 2 for the end index as the element from the end index is excluded.

>>> zero_to_five[0:2]
['zero', 'one']

Note that the start position for the slicing is 0 by default so we could just as well have written.

>>> zero_to_five[:2]
['zero', 'one']

To get the last three elements.

>>> zero_to_five[3:]
['three', 'four', 'five']

It is worth noting that we can use negative indices, where -1 represents the last element. So to get all
elements except the first and the last, one could slice the list using the indices 1 and -1.

>>> zero_to_five[1:-1]
['one', 'two', 'three', 'four']

We can use list slicing to calculate the local GC-content measurements of our DNA.

46 Chapter 7. Data analysis

The Biologist’s Guide to Computing, Release 0.9.1

>>> gc_content(dna_list[:10])
40.0
>>> gc_content(dna_list[10:20])
30.0
>>> gc_content(dna_list[20:30])
70.0
>>> gc_content(dna_list[30:40])
50.0
>>> gc_content(dna_list[40:50])
0.0

7.7 Loops
It can get a bit repetitive, tedious, and error prone specifying all the ranges manually. A better way to do
this is to make use of a loop construct. A loop allows a program to cycle through the same set of operations
a number of times.

In lower level languages while loops are common because they operate in a way that closely mimic how the
hardware works. The code below illustrates a typical setup of a while loop.

>>> cycle = 0
>>> while cycle < 5:
... print(cycle)
... cycle = cycle + 1
...
0
1
2
3
4

In the code above Python moves through the commands in the while loop executing them in order, i.e.
printing the value of the cycle variable and then incrementing it. The logic then moves back to the while
statement and the conditional (cycle < 5) is re-evaluated. If true the commands in the while statment
are executed in order again, and so forth until the conditional is false. In this example the print(cycle)
command was called five times, i.e. until the cycle variable incremented to 5 and the cycle < 5 conditional
evaluated to false.

However, when working in Python it is much more common to make use of for loops. For loops are used to
iterate over elements in data structures such as lists.

>>> for item in [0, 1, 2, 3, 4]:
... print(item)
...
0
1
2
3
4

In the above we had to manually write out all the numbers that we wanted. However, because iterating over
a range of integers is such a common task Python has a built-in function for generating such lists.

>>> range(5)
[0, 1, 2, 3, 4]

So a typical for loop might look like the below.

7.7. Loops 47

The Biologist’s Guide to Computing, Release 0.9.1

>>> for item in range(5):
... print(item)
...
0
1
2
3
4

The range() function can also be told to start at a larger number. Say for example that we wanted a list
including the numbers 5, 6 and 7.

>>> range(5, 8)
[5, 6, 7]

As with slicing the start value is included whereas the end value is excluded.

It is also possible to alter the step size. To do this we must specify the start and end values explicitly before
adding the step size.

>>> range(0, 50, 10)
[0, 10, 20, 30, 40]

We are now in a position where we can create a naive loop for for calculating the local GC-content of our
DNA.

>>> for start in range(0, 50, 10):
... end = start + 10
... print(gc_content(dna_list[start:end]))
...
40.0
30.0
70.0
50.0
0.0

Loops are really powerful. They provide a means to iterate over lots of items and can be used to automate
repetitive tasks.

7.8 Creating a sliding windowGC-content function
So far we have been working with Python in interactive mode. This is a great way to explore what can
be achieved with Python. It is also handy to simply use Python’s interactive mode as a command line
calculator. However, it can get a little bit clunky when trying to write constructs that span several lines, such
as functions.

Now we will examine how one can write a Python script as a text file and how to run that text file through
the Python interpreter, i.e. how to run a Python script from the command line.

Start off by creating a new directory to work in.

$ mkdir S.coelicolor-local-GC-content
$ cd S.coelicolor-local-GC-content

Use your favourite text editor to enter the code below into a file named gc_content.py.

1 sequence = list("attagcgcaatctaactacactactgccgcgcggcatatatttaaatata")
2 print(sequence)

48 Chapter 7. Data analysis

The Biologist’s Guide to Computing, Release 0.9.1

Note: If your text editor is not giving you syntax highlighting find out how it can be enabled. If your text
editor does not support syntax highlighting find a better text editor!

Open up a terminal and go to the directory where you saved the gc_content.py script. Run the script using
the command below.

$ python gc_content.py

You should see the output below printed to your terminal.

['a', 't', 't', 'a', 'g', 'c', 'g', 'c', 'a', 'a', 't', 'c', 't', 'a', 'a',
'c', 't', 'a', 'c', 'a', 'c', 't', 'a', 'c', 't', 'g', 'c', 'c', 'g', 'c',
'g', 'c', 'g', 'g', 'c', 'a', 't', 'a', 't', 'a', 't', 't', 't', 'a', 'a',
'a', 't', 'a', 't', 'a']

In the script we used Python’s built-in list() function to convert the DNA string into a list. We then printed
out the sequence list.

Now let us add the gc_content() function to the script.

1 def gc_content(sequence):
2 "Return GC-content as a percentage from a list of DNA letters."
3 gc_count = sequence.count("g") + sequence.count("c")
4 gc_fraction = float(gc_count) / len(sequence)
5 return 100 * gc_fraction
6

7 sequence = list("attagcgcaatctaactacactactgccgcgcggcatatatttaaatata")
8 print(gc_content(sequence))

In the above the gc_content() function is implemented as per our exploration in our interactive session. The
only difference is the addition of a, so called, “docstring” (documentation string) to the body of the function
(line 2). The docstring is meant to document the purpose and usage of the function. Documenting the code
in this way makes it easier for you, and others, to understand it.

Note that the script now prints out the GC-content rather than the sequence (line 8). Let us run the updated
script from the command line.

$ python gc_content.py
38.0

The next piece of code will be a bit more complicated. However, note that that it represents the most
complicated aspect of this chapter. So if you find it difficult, don’t give up, it gets easier again later on.

Now let us implement a new function for performing a sliding window analysis. Add the code below to the
start of the gc_content.py file.

1 def sliding_window_analysis(sequence, function, window_size=10):
2 """Return an iterator that yields (start, end, property) tuples.
3

4 Where start and end are the indices used to slice the input list
5 and property is the return value of the function given the sliced
6 list.
7 """
8 for start in range(0, len(sequence), window_size):
9 end = start + window_size

10 if end > len(sequence):
11 break
12 yield start, end, function(sequence[start:end])

7.8. Creating a sliding windowGC-content function 49

The Biologist’s Guide to Computing, Release 0.9.1

There is quite a lot going on in the code above so let us walk through it slowly. One of the first things to note
is that the sliding_window_analysis() function takes another function as its second argument. Functions
can be passed around just like variables and on line 12 the function is repeatedly called with slices of the
input sequence.

The sliding_window_analysis() function also takes a window_size argument. This defines the step size of
the range() function used to generate the start indices for the slicing. Note that in this case we provide the
window_size argument with a default value of 10. This means that the window_size argument does not need
to be explicitly set when calling the function (if one is happy with the default).

On line 9, inside the for loop, we generate the end index by adding the window_size to the start index. This
is followed by a check that the generated end index would not result in a list slice that spanned beyond the
end of the sequence.

On line 11, inside the if statment there is a break clause. The break statement is used to break out of the
loop immediately. In other words if the end variable is greater than the length of the sequence we break out
of the loop immediately.

At the end of the for loop we make use of the yield keyword to pass on the start and end indices as well
as the value resulting from calling the input function with the sequence slice. This means that rather than
returning a value the sliding_window_analysis() function returns an iterator. As the name suggests an
“iterator” is an object that one can iterate over, for example using a for loop. Let us add some code to the
script to illustrate how one would use the sliding_window_analysis() function in practise.

20 sequence = list("attagcgcaatctaactacactactgccgcgcggcatatatttaaatata")
21 for start, end, gc in sliding_window_analysis(sequence, gc_content):
22 print(start, end, gc)

Let us test the code again.

$ python gc_content.py
(0, 10, 40.0)
(10, 20, 30.0)
(20, 30, 70.0)
(30, 40, 50.0)
(40, 50, 0.0)

The current implementation of the sliding_window_analysis() is very dependent on the frame of reference
as the window slides along. For example if the window_size argument was set to 3 one would obtain the
analysis of the first codon reading frame, but one would have no information about the second and third
codon reading frames. To overcome this one can perform sliding window analysis with overlapping windows.
Let us illustrate this visually by extracting codons from a DNA sequence.

Original sequence.
atcgctaaa

Non overlapping windows.
atc

gct
aaa

Overlapping windows.
atc
tcg
cgc
gct
cta
taa
aaa

50 Chapter 7. Data analysis

The Biologist’s Guide to Computing, Release 0.9.1

To enable overlapping windows in our sliding_window_analysis() function we need to add a step_size
argument to it and make use of this in the call to the range() function.

1 def sliding_window_analysis(sequence, function, window_size=10, step_size=5):
2 """Return an iterator that yields (start, end, property) tuples.
3

4 Where start and end are the indices used to slice the input list
5 and property is the return value of the function given the sliced
6 list.
7 """
8 for start in range(0, len(sequence), step_size):
9 end = start + window_size

10 if end > len(sequence):
11 break
12 yield start, end, function(sequence[start:end])

Let us run the script again to see what the output of this overlapping sliding window analysis is.

$ python gc_content.py
(0, 10, 40.0)
(5, 15, 40.0)
(10, 20, 30.0)
(15, 25, 40.0)
(20, 30, 70.0)
(25, 35, 100.0)
(30, 40, 50.0)
(35, 45, 0.0)
(40, 50, 0.0)

Note that the gc_content() function is now applied to overlapping segments of DNA. This allows us, for
example, to note that the 25 to 35 region has a GC-content of 100%, which is something that we did not
manage to pick out before.

7.9 Downloading the genome
It is time to start working on some real data. Let us download the genome of Streptomyces coelicolor from
the Sanger Centre ftp site36. The URL shortened using bitly37 point to the Sco.dna file.

$ curl --location --output Sco.dna http://bit.ly/1Q8eKWT
$ head Sco.dna
SQ Sequence 8667507 BP; 1203558 A; 3121252 C; 3129638 G; 1213059 T; 0 other;

cccgcggagc gggtaccaca tcgctgcgcg atgtgcgagc gaacacccgg gctgcgcccg 60
ggtgttgcgc tcccgctccg cgggagcgct ggcgggacgc tgcgcgtccc gctcaccaag 120
cccgcttcgc gggcttggtg acgctccgtc cgctgcgctt ccggagttgc ggggcttcgc 180
cccgctaacc ctgggcctcg cttcgctccg ccttgggcct gcggcgggtc cgctgcgctc 240
ccccgcctca agggcccttc cggctgcgcc tccaggaccc aaccgcttgc gcgggcctgg 300
ctggctacga ggatcggggg tcgctcgttc gtgtcgggtt ctagtgtagt ggctgcctca 360
gatagatgca gcatgtatcg ttggcagaaa tatgggacac ccgccagtca ctcgggaatc 420
tcccaagttt cgagaggatg gccagatgac cggtcaccac gaatctaccg gaccaggtac 480
cgcgctgagc agcgattcga cgtgccgggt gacgcagtat cagacggcgg gtgtgaacgc 540

36 ftp://ftp.sanger.ac.uk/pub/project/pathogens/S_coelicolor/whole_genome/
37 https://bitly.com/

7.9. Downloading the genome 51

ftp://ftp.sanger.ac.uk/pub/project/pathogens/S_coelicolor/whole_genome/
https://bitly.com/

The Biologist’s Guide to Computing, Release 0.9.1

7.10 Reading andwriting files
In order to be able to process the genome of Streptomyces coelicolor we need to be able to read in the Sco.dna
file. In Python reading and writing of files is achieved using the built-in open() function, which returns a file
handle.

What is a file handle?

A file handle is a data structure that handles the book keeping of the position within the file as well as
the mode in which the file was opened. The mode of the file determines what one can do with it. For
example one cannot write to a file that has been opened for reading. The position of the file handle
determines where the next operation will take place. For example, if one is about to write something to
a file existing content will be overwritten unless the position is pointing at the end of the file, in which
case the new content will be appended to the old.

Before we start adding code to our script let us examine reading and writing of files using in Python’s
interactive mode. Let us open up the Sco.dna file for reading.

>>> file_handle = open("Sco.dna", mode="r")

We can access the current position within the file using the tell() method of the file handle.

>>> file_handle.tell()
0

The integer zero indicates that we are at the beginning of the file.

To read in the entire content of the file as a single string of text one can use the read() method of the file
handle.

>>> text = file_handle.read()

After having read in the content of the file the position of the file handle will point at the end of the file.

>>> file_handle.tell()
11701261

When one has finished working with a file handle it is important to remember to close it.

>>> file_handle.close()

Let us examine the text that we read in.

>>> type(text)
<type 'str'>
>>> len(text)
11701261
>>> text[:60]
'SQ Sequence 8667507 BP; 1203558 A; 3121252 C; 3129638 G; 1'

However, rather than reading in files as continuous strings one often want to process files line by line. One
can read in a file as a list of lines using the readlines() method.

>>> file_handle = open("Sco.dna", "r")
>>> lines = file_handle.readlines()
>>> file_handle.close()

Let us examine the lines that we read in.

52 Chapter 7. Data analysis

The Biologist’s Guide to Computing, Release 0.9.1

>>> type(lines)
<type 'list'>
>>> len(lines)
144461
>>> lines[0]
'SQ Sequence 8667507 BP; 1203558 A; 3121252 C; 3129638 G; 1213059 T; 0 other;\n'

A third way of accessing the content of a file handle is to simply treat it as an iterator. This is possible as
the Python file handles implement a method called next() that returns the next line in the file. When it
reaches the end of the file the next() function raises a StopIteration exception, which tells the iterator to
stop iterating.

Let’s see the workings of the next() method in action.

>>> file_handle = open("Sco.dna", "r")
>>> file_handle.next()
'SQ Sequence 8667507 BP; 1203558 A; 3121252 C; 3129638 G; 1213059 T; 0 other;\n'
>>> file_handle.next()
' cccgcggagc gggtaccaca tcgctgcgcg atgtgcgagc gaacacccgg gctgcgcccg 60\n'

We can go to the end of the file using the seek() method of the file handle.

>>> file_handle.seek(11701261)

Let’s see what happens when we call the next() method now.

>>> file_handle.next()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
StopIteration

As explained above this raises a StopIteration exception. Now that we are done with our experiment we
must remember to close the file handle.

>>> file_handle.close()

In practise one tends to use file handles directly within for loops.

>>> num_lines = 0
>>> file_handle = open("Sco.dna", "r")
>>> for line in file_handle:
... num_lines = num_lines + 1
...
>>> print(num_lines)
144461

In the for loop above the file handle acts as an iterator, yielding the lines within the opened file.

Again we must not forget to close the file handle.

>>> file_handle.close()

Having to constantly remember to close file handles when one is done with them can become tedious.
Furthermore, forgetting to close file handles can have dire consequences. To make life easier one can make
use of Python’s built-in with keyword.

The with keywords works with context managers. A context manager implements the so called “context
manager protocol”. In the case of a file handle this means that the file is opened when one enters into the
context of the with statement and that the file is automatically closed when one exits out of the context. All

7.10. Reading andwriting files 53

The Biologist’s Guide to Computing, Release 0.9.1

that is a fancy way of saying that we do not need to worry about remembering to close files if we access file
handles using the syntax below.

>>> with open("Sco.dna", mode="r") as file_handle:
... text = file_handle.read()
...

Let us shift the focus to the writing of files. There are two modes for writing files w and a. The former will
overwrite any existing files with the same name whereas the latter would append to them. Let us illustrate
this with an example.

>>> with open("tmp.txt", "w") as file_handle:
... file_handle.write("Original message")
...
>>> with open("tmp.txt", "r") as file_handle:
... print(file_handle.read())
...
Original message
>>> with open("tmp.txt", "a") as file_handle:
... file_handle.write(", with more info")
...
>>> with open("tmp.txt", "r") as file_handle:
... print(file_handle.read())
...
Original message, with more info
>>> with open("tmp.txt", "w") as file_handle:
... file_handle.write("scrap that...")
...
>>> with open("tmp.txt", "r") as file_handle:
... print(file_handle.read())
...
scrap that...

Armed with our new found knowledge of how to read and write files we will now create a function for
reading in the DNA sequence from the Sco.dna file.

7.11 Creating a function for reading in the Streptomyces sequence
Let us create a function that reads in a genome as a string and returns the DNA sequence as a list. At this
point we have a choice of what the input parameter should be. We could give the function the name of the
file containing the genome or we could give the function a file handle of the genome. Personally, I prefer
to create functions that accept file handles, because they are more generic. Sometimes the data to be read
comes from sources other than a file on disk. However, as long as these behave as a file object one can still
pass them to the function.

Let us have a look at the file containing the Streptomyces coelicolor genome.

$ head Sco.dna
SQ Sequence 8667507 BP; 1203558 A; 3121252 C; 3129638 G; 1213059 T; 0 other;

cccgcggagc gggtaccaca tcgctgcgcg atgtgcgagc gaacacccgg gctgcgcccg 60
ggtgttgcgc tcccgctccg cgggagcgct ggcgggacgc tgcgcgtccc gctcaccaag 120
cccgcttcgc gggcttggtg acgctccgtc cgctgcgctt ccggagttgc ggggcttcgc 180
cccgctaacc ctgggcctcg cttcgctccg ccttgggcct gcggcgggtc cgctgcgctc 240
ccccgcctca agggcccttc cggctgcgcc tccaggaccc aaccgcttgc gcgggcctgg 300
ctggctacga ggatcggggg tcgctcgttc gtgtcgggtt ctagtgtagt ggctgcctca 360
gatagatgca gcatgtatcg ttggcagaaa tatgggacac ccgccagtca ctcgggaatc 420

54 Chapter 7. Data analysis

The Biologist’s Guide to Computing, Release 0.9.1

tcccaagttt cgagaggatg gccagatgac cggtcaccac gaatctaccg gaccaggtac 480
cgcgctgagc agcgattcga cgtgccgggt gacgcagtat cagacggcgg gtgtgaacgc 540

From this we want a function that:

1. Discards the first line, as it does not contain any sequence

2. Iterates over all subsequent lines extracting the relevant sequence from them

Extracting the relevant sequence can be achieved by noting that each sequence line consists of seven “words”,
where a word is defined as a set of characters separated by one or more white spaces. The first six words
correspond to sequence, whereas the last word is an index listing the number of nucleotide bases.

Let us implement such a function. Add the lines below to the top of the gc_content.py file.

1 def parse_dna(file_handle):
2 """Return DNA sequence as a list."""
3 first_line = file_handle.next() # Discard the first line.
4 sequence = []
5 for line in file_handle:
6 words = line.split()
7 seq_string = "".join(words[:-1])
8 seq_list = list(seq_string)
9 sequence.extend(seq_list)

10 return sequence

There are a couple of new string methods introduced in the above, let’s explain them now.

Let’s look at line six first.

6 words = line.split()

Here we use the split() method to split the string into a list of words, by default the split() method splits
text based on one or more white space characters.

On line seven we use the join() method to join the words together.

7 seq_string = "".join(words[:-1])

In this instance there are no characters separating the words to be joined. It is worth clarifying this
with an example, if we wanted to join the words using a comma character one would use the syntax
",".join(words[:-1]).

On line seven it is also worth noting that we exclude the last word (the numerical index) by making use of
list slicing words[:-1].

Finally, on line nine we make use of the list method extend(), this extends the existing sequence list with all
the elements from the seq_list list. Because words seq_string and seq_list will be overwritten when the
loop moves on to the next line in the input file.

9 sequence.extend(seq_list)

7.11. Creating a function for reading in the Streptomyces sequence 55

The Biologist’s Guide to Computing, Release 0.9.1

Adding elements to lists append() vs extend()

There are two main ways of adding elements to a list. The first is the append method, which adds a
single element.

>>> colors = ["red", "green"]
>>> colors.append("blue")

The extend() method is different in that it extends the list with the content of another list.

>>> colors.extend(["yellow", "purple"])
>>> print(colors)
['red', 'green', 'blue', 'yellow', 'purple']

Now let us update the gc_content.py script to initalise the sequence by parsing the Sco.dna file.

31 with open("Sco.dna", "r") as file_handle:
32 sequence = parse_dna(file_handle)
33

34 for start, end, gc in sliding_window_analysis(sequence, gc_content):
35 print(start, end, gc)

Finally, let us change the default window_size and step_size values. In the below I have split the func-
tion definition over two lines so as not to make the line exceed 78 characters. Exceeding 78 characters is
considered poor “style” because it makes it difficult to read the code.

12 def sliding_window_analysis(sequence, function,
13 window_size=100000, step_size=50000):
14 """Return an iterator that yields (start, end, property) tuples.
15

16 Where start and end are the indices used to slice the input list
17 and property is the return value of the function given the sliced
18 list.
19 """

Let us run the script again.

$ python gc_content.py

Note that this will produce a lot of output. To find out the number of lines that are generated we can make
use of piping and the wc -l command (mnemonic wc word count, -l lines) .

$ python gc_content.py | wc -l
173

The result makes sense as there are 8667507 base pairs in the sequence and we are stepping through it using
a step size of 50000.

>>> 8667507 / 50000
173

7.12 Writing out the sliding window analysis
Finally we will write out the analysis to a text file. Since this data is tabular we will use the CSV file format.
Furthermore, since we will want to plot the data using ggplot2 in Data visualisation (page 61) we will use a
“tidy” data structure, see Tidy data (page 28) for details.

Edit the end of the gc_content.py script to make it look like the below.

56 Chapter 7. Data analysis

The Biologist’s Guide to Computing, Release 0.9.1

32 with open("Sco.dna", "r") as file_handle:
33 sequence = parse_dna(file_handle)
34

35 with open("local_gc_content.csv", "w") as file_handle:
36 header = "start,middle,end,gc_content\n"
37 file_handle.write(header)
38 for start, end, gc in sliding_window_analysis(sequence, gc_content):
39 middle = (start + end) / 2
40 row = "{},{},{},{}\n".format(start, middle, end, gc)
41 file_handle.write(row)

On line 35 we open a file handle to write to. On lines 36 and 37 we write a header to the CSV file. Lines 38
to 41 then performs the sliding window analysis and writes the results as rows, or lines if you prefer, to the
CSV file. Line 39 calculates the middle of the local sequence by calculating the mean of the start and end
positions.

The main new feature introduced in the code snippet above is on line 40 where we use Python’s built in
string formatting functionality. The matching curly braces in the string are replaced with the content of the
format() string method. Let us illustrate this with an example in interactive mode.

>>> print("{},{},{},{}")
{},{},{},{}
>>> print("{},{},{},{}".format(1, 5, 10, 38.5))
1,5,10,38.5

Okay, let us see what happens when we run the script.

$ python gc_content.py

This should have created a file named local_gc_content.csv in the working directory.

$ ls
Sco.dna
gc_content.py
local_gc_content.csv

We can examine the top of this newly created file using the head command.

$ head local_gc_content.csv
start,middle,end,gc_content
0,50000,100000,69.124
50000,100000,150000,70.419
100000,150000,200000,72.495
150000,200000,250000,71.707
200000,250000,300000,71.098
250000,300000,350000,72.102
300000,350000,400000,72.712
350000,400000,450000,73.15
400000,450000,500000,73.27

Great, everything seems to be working. Let’s start tracking our code using Git, see Keeping track of your
work (page 31).

$ git init
$ git status
On branch master

Initial commit

7.12. Writing out the sliding window analysis 57

The Biologist’s Guide to Computing, Release 0.9.1

Untracked files:
(use "git add <file>..." to include in what will be committed)

Sco.dna
gc_content.py
local_gc_content.csv

nothing added to commit but untracked files present (use "git add" to track)

We have got three untracked files in our directory, the script, the input data and the output data. We don’t
want to track the input and the output data so let’s create a .gitignore file and add those files to it.

Sco.dna
local_gc_content.csv

Let’s check the status of our Git repository again.

$ git status
On branch master

Initial commit

Untracked files:
(use "git add <file>..." to include in what will be committed)

.gitignore
gc_content.py

nothing added to commit but untracked files present (use "git add" to track)

Let’s start tracking the gc_content.py and the .gitignore files and take a snapshot of them in their current
form.

$ git add gc_content.py .gitignore
$ git commit -m "Initial file import"
[master (root-commit) 6d8e0cf] Initial file import
2 files changed, 43 insertions(+)
create mode 100644 .gitignore
create mode 100644 gc_content.py

Well done! We have covered a lot of ground in this chapter. I suggest digging out some good music and
chilling out for a bit.

7.13 Key concepts
• Python is a powerful scripting language that is popular in the scientific community

• You can explore Python’s syntax using its interactive mode

• Variables and functions help us avoid having to repeat ourselves, the DRY principle

• When naming variables and functions explicit trumps succinct

• Loops are really powerful, they form the basis of automating repetitive tasks

• Files are accessed using file handles

• A file handle is a data structure that handles the book keeping of the position within the file and the
mode in which it was opened

58 Chapter 7. Data analysis

The Biologist’s Guide to Computing, Release 0.9.1

• The mode of the file handle determines how you will interact with the file

• Read mode only allows reading of a file

• Append mode will keep the existing content of a file and append to it

• Write mode will delete any previous content before writing to it

7.13. Key concepts 59

The Biologist’s Guide to Computing, Release 0.9.1

60 Chapter 7. Data analysis

CHAPTER8

Data visualisation

So far we have been learning how to crunch data. Now we will look into how to visualise it.

There are two main purposes of representing data visually:

1. To explore the data

2. To convey a message to an audience

In this chapter we will look at how both of these can be accomplished using R38 and its associated ggplot239

package. This choice is based on ggplot2 being one of the best plotting tools available. It is easy to use and
has got sensible defaults that result in beautiful plots out of the box. An added advantage is that this gives
us a means to get more familiar with R, which is an awesome tool for statistical computing (although this
topic is beyond the scope of this book). Other tools will be discussed later in the section Other useful tools
for scripting the generation of figures (page 82).

We will start off by exploring Fisher’s Iris flower data set40. This will be an exercise in data exploration.

Finally, we will use R and ggplot2 to build up a sliding window plot of the GC content data from the Data
analysis (page 43) chapter. This will serve to illustrate some points to consider when trying to convey a
message to an audience.

8.1 Starting R and loading the Iris flower data set
R like Python can be run in an interactive shell. This is a great way to get familiar with R. To access R’s
interactive shell simply type R into your terminal and press enter.

$ R

R version 3.2.2 (2015-08-14) -- "Fire Safety"
Copyright (C) 2015 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin14.5.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.

38 https://www.r-project.org/
39 http://ggplot2.org/
40 https://en.wikipedia.org/wiki/Iris_flower_data_set

61

https://www.r-project.org/
http://ggplot2.org/
https://en.wikipedia.org/wiki/Iris_flower_data_set

The Biologist’s Guide to Computing, Release 0.9.1

Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

>

R comes bundled with a number of data sets. To view these you can use the data() function, which lists all
the available data sets.

> data()
Data sets in package ‘datasets’:

AirPassengers Monthly Airline Passenger Numbers 1949-1960
BJsales Sales Data with Leading Indicator
BJsales.lead (BJsales)

Sales Data with Leading Indicator
BOD Biochemical Oxygen Demand
CO2 Carbon Dioxide Uptake in Grass Plants
...

If you want to stop displaying the data sets without having to scroll to the bottom press the q button on your
keyboard.

We are interested in the Iris flower data set, called iris, let us load it.

> data(iris)

This loads the iris data set into the workspace. You can list the content of the workspace using the ls()
function.

> ls()
[1] "iris"

What is a workspace?

R has the concept of a “workspace”. The workspace is the current working environment and includes
any user defined objects. At the end of a R session the user can save the workspace. If saved the
workspace will be automatically loaded the next time R is started.

8.2 Understanding the structure of the iris data set
First of all let us find out about the internal structure of the iris data set using the str() funciton.

> str(iris)
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

62 Chapter 8. Data visualisation

The Biologist’s Guide to Computing, Release 0.9.1

This reveals that the iris data set is a data frame with 150 observations and five variables. It is also worth
noting that Species is recorded as a Factor data structure. This means that it has categorical data. In this
case three different species.

In R a data frame is a data structure for storing two-dimensional data. In a data frame each column contains
the same type of data and each row has values for each column.

What is the difference between vectors, lists and data frames?

As well as data frames R also has concepts of vectors and lists. A vector is a list where each item is
of the same type. A list is more flexible in that the items can be of different types. The data frame is
essentially a list of equal length lists.

You can find the names of the columns in a data frame using the names() function.

> names(iris)
[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

To find the number of columns and rows one can use the ncol() and nrow() functions, respectively.

> ncol(iris)
[1] 5
> nrow(iris)
[1] 150

To view the first six rows of a data frame one can use the head() function.

> head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

To view the last six rows of a data frame one can use the tail() function.

> tail(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

145 6.7 3.3 5.7 2.5 virginica
146 6.7 3.0 5.2 2.3 virginica
147 6.3 2.5 5.0 1.9 virginica
148 6.5 3.0 5.2 2.0 virginica
149 6.2 3.4 5.4 2.3 virginica
150 5.9 3.0 5.1 1.8 virginica

Warning: Often the most difficult aspect of data visualisation using R and ggplot2 is getting the data
into the right structure. The iris data set is well structured in the sense that each observation is recorded
as a separate row and each row has the same number of columns. Furthermore, each column in a row
has a value, note for example how each row has a value indicating the Species. Once your data is well
structured plotting it becomes relatively easy. However, if you are used to adding heterogeneous data to
Excel the biggest issue that you will face is formatting the data so that it becomes well structured and can
be loaded as a data frame in R. For more detail on how to structure your data see Tidy data (page 28).

8.2. Understanding the structure of the iris data set 63

The Biologist’s Guide to Computing, Release 0.9.1

8.3 A note on statistics in R
Although this book is not about statistics it is worth mentioning that R is a superb tool for doing statistics. It
has many built in functions for statistical computing. For example to calculate the median Sepal.Length for
the iris data one can use the built in median() function.

> median(iris$Sepal.Length)
[1] 5.8

In the above the $ symbol is used to specify the column of interest in the data frame.

Another useful tool for getting an overview of a data set is the summary() function.

> summary(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width
Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
Median :5.800 Median :3.000 Median :4.350 Median :1.300
Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500

Species
setosa :50
versicolor:50
virginica :50

8.4 Default plotting in R
Before using ggplot2 let us have a look at how to generate default plots in R.

First of all let us plot a histogram of the Sepal.Length (Fig. 8.1).

> hist(iris$Sepal.Length)

Scatter plots can be produced using the plot() function. The command below produces a scatter plot of
Sepal.Width versus Sepal.Length (Fig. 8.2).

> plot(iris$Sepal.Length, iris$Sepal.Width)

Finally, a decent overview of the all data can be obtained by passing the entire data frame to the plot()
function (Fig. 8.3).

> plot(iris)

R’s built in plotting functions are useful for getting quick exploratory views of the data. However, they are
a bit dull. In the next section we will make use of the ggplot2 package to make more visually pleasing and
informative figures.

8.5 Installing the ggplot2 package
If you haven’t used it before you will need to install the ggplot2 package. Detailed instructions can be found
in Installing R packages (page 144). In summary you need to run the command below.

64 Chapter 8. Data visualisation

The Biologist’s Guide to Computing, Release 0.9.1

Fig. 8.1: Histogram of Iris sepal length data generated using R’s built in hist() function.

8.5. Installing the ggplot2 package 65

The Biologist’s Guide to Computing, Release 0.9.1

Fig. 8.2: Scatter plot of Iris sepal length vs width generated using R’s built in plot() function.

66 Chapter 8. Data visualisation

The Biologist’s Guide to Computing, Release 0.9.1

Fig. 8.3: Overview plot of Iris data using R’s built in plot() function.

8.5. Installing the ggplot2 package 67

The Biologist’s Guide to Computing, Release 0.9.1

> install.packages("ggplot2")

8.6 Loading the ggplot2 package
In order to make use of the ggplot2 package we need to load it. This is achieved using the library()
function.

> library("ggplot2")

8.7 Plotting using ggplot2
To get an idea of what it feels like to work with ggplot2 let us re-create the previous histogram and scatter
plot with it.

Let us start with the histogram (Fig. 8.4).

> ggplot(data=iris, mapping=aes(Sepal.Length)) + geom_histogram()

The syntax used may look a little bit strange at first. However, before going into more details about what it
all means let’s create the scatter plot (Fig. 8.5) to get a better feeling of how to work with ggplot2.

> ggplot(data=iris, mapping=aes(x=Sepal.Length, y=Sepal.Width)) + geom_point()

In the examples above we provide the ggplot() function with two arguments data and mapping. The former
contains the data frame of interest and the latter specifies the columns(s) to be plotted.

The ggplot function returns a ggplot object that can be plotted. However, in order to view an actual plot one
needs to add a layer to the ggplot object defining how the data should be presented. In the examples above
this is achieved using the + geom_histogram() and + geom_point() syntax.

A ggplot object consists of separate layers. The reason for separating out the generation of a figure into
separate layers is to allow the user to better be able to reason about the best way to represent the data.

The three layers that we have come across so far are:

• Data: the data to be plotted

• Aesthetic: how the data should be mapped to the aesthetics of the plot

• Geom: what type of plot should be used

Of the above the “aesthetic” layer is the trickiest to get one’s head around. However, take for example the
scatter plot, one aesthetic choice that we have made for that plot is that the Sepal.Length should be on the
x-axis and the Sepal.Width should be on the y-axis.

To reinforce this let us augment the scatter plot by sizing the points in the scatter plot by the Petal.Width
and coloring them by the Species (Fig. 8.6), all of which could be considered to be aesthetic aspects of how
to plot the data.

> ggplot(iris, aes(x=Sepal.Length,
+ y=Sepal.Width,
+ size=Petal.Width,
+ color=Species)) + geom_point()

In the above the secondary prompt, represented by the plus character (+), denotes a continuation line. In
other words R interprets the above as one line of code.

68 Chapter 8. Data visualisation

The Biologist’s Guide to Computing, Release 0.9.1

Fig. 8.4: Histogram of Iris sepal length data generated using R’s ggplot2 package. The default bin width
used is different from the one used by R’s built in hist() function, hence the difference in the appearance of
the distribution.

8.7. Plotting using ggplot2 69

The Biologist’s Guide to Computing, Release 0.9.1

Fig. 8.5: Scatter plot of Iris sepal length vs width generated using R’s ggplot2 package.

70 Chapter 8. Data visualisation

The Biologist’s Guide to Computing, Release 0.9.1

Fig. 8.6: Scatter plot of Iris sepal length vs width, where the size of each point represents the petal width
and the colour is used to indicate the species.

8.7. Plotting using ggplot2 71

The Biologist’s Guide to Computing, Release 0.9.1

The information in the scatterplot is now four dimensional! The x- and y-axis show Sepal.Length and
Sepal.Width, the size of the point indicates the Petal.Width and the colour shows the Species. By adding
Petal.Width and Species as additional aesthetic attributes to the figure we can start to discern structure
that was previously hidden.

8.8 Available “Geoms”
The ggplot2 package comes bundled with a wide range of geoms (“geometries” for plotting data). So far we
have seen geom_histogram() and geom_point(). To find out what other geoms are available you can start
typing geom_ into a R session and hit the Tab key to list the available geoms using tab-completion.

> geom_
geom_abline geom_errorbarh geom_quantile
geom_area geom_freqpoly geom_raster
geom_bar geom_hex geom_rect
geom_bin2d geom_histogram geom_ribbon
geom_blank geom_hline geom_rug
geom_boxplot geom_jitter geom_segment
geom_contour geom_label geom_smooth
geom_count geom_line geom_spoke
geom_crossbar geom_linerange geom_step
geom_curve geom_map geom_text
geom_density geom_path geom_tile
geom_density_2d geom_point geom_violin
geom_density2d geom_pointrange geom_vline
geom_dotplot geom_polygon
geom_errorbar geom_qq

These work largely as expected, for example the geom_boxplot() results in a boxplot and the geom_line()
results in a line plot. For illustrations of these different geoms in action have a look at the examples in the
ggplot2 documentation41.

8.9 Scripting data visualisation
Now that we have a basic understanding of how to interact with R and the functionality in the ggplot library,
let’s take a step towards automating the figure generation by recording the steps required to plot the data in
a script.

Let us work on the histogram example. In the code below we store the ggplot object in the variable g and
make use of ggsave() to write the plot to a file named iris_sepal_length_histogram.png. Save the code
below to a file named iris_sepal_length_histogram.R using your favorite text editor.

library("ggplot2")
data(iris)

g <- ggplot(data=iris, aes(Sepal.Length)) +
geom_histogram()

ggsave('iris_sepal_length_histogram.png')

To run this code we make use of the program Rscript, which comes bundled with your R installation.

41 http://docs.ggplot2.org/current/index.html

72 Chapter 8. Data visualisation

http://docs.ggplot2.org/current/index.html
http://docs.ggplot2.org/current/index.html

The Biologist’s Guide to Computing, Release 0.9.1

$ Rscript iris_sepal_length_histogram.R

This will write the file iris_sepal_length_histogram.png to your current working directory.

8.10 Faceting
In the extended scatterplot example (Fig. 8.6) we found that it was useful to be able to visualise which data
points belonged to which species. Maybe it would be useful to do something similar with the data in our
histogram.

In order to achieve this ggplot2 provides the concept of faceting, the ability to split your data by one or more
variables. Let us split the data by Species using the facet_grid() function (Fig. 8.7).

library("ggplot2")
data(iris)

g <- ggplot(data=iris, aes(Sepal.Length)) +
geom_histogram() +
facet_grid(Species ~ .)

ggsave('iris_sepal_length_histogram.png')

In the above the facet_grid(Species ~ .) states that we want one Species per row, as opposed to one
species per column (facet_grid(. ~ Species)). Replacing the dot (.) with another variable would result
in faceting the data into a two dimensional grid.

Faceting is a really powerful feature of ggplot2! It allows you to easily split data based on one or more
variables and can result in insights about underlying structures and multivariate trends.

8.11 Addingmore colour
The faceted histogram plot (Fig. 8.7) clearly illustrates that there are differences in the distributions of the
sepal length between the different Iris species.

However, suppose that the faceted histogram figure was meant to be displayed next to the extended scatter
plot (Fig. 8.6). To make it easier to make the mental connection between the two data representations it
may be useful to colour the histograms by species as well.

The colour of a histogram is an aesthetic characteristic. Let us add the fill colour as an aesthetic to the
histogram geometric object (Fig. 8.8).

library("ggplot2")
data(iris)

g <- ggplot(data=iris, aes(Sepal.Length)) +
geom_histogram(aes(fill=Species)) +
facet_grid(Species ~ .)

ggsave('iris_sepal_length_histogram.png')

8.12 Purpose of data visualisation
There are two main purposes of representing data visually:

8.10. Faceting 73

The Biologist’s Guide to Computing, Release 0.9.1

Fig. 8.7: Histogram of Iris sepal length data faceted by species.

74 Chapter 8. Data visualisation

The Biologist’s Guide to Computing, Release 0.9.1

Fig. 8.8: Histogram of Iris sepal length data faceted and coloured by species.

8.12. Purpose of data visualisation 75

The Biologist’s Guide to Computing, Release 0.9.1

1. To explore the data

2. To convey a message to an audience

So far we have been focussing on the former. Let us now think a little bit more about the latter, conveying a
message to an audience. In other words creating figures for presentations and publications.

8.13 Conveying amessage to an audience
The first step in creating an informative figure is to consider who the intended audience is. Is it the general
public, school children or plant biologists? The general public may be interested in trends, whereas a plant
scientist may be interested in a more detailed view.

Secondly, what is the message that you want to convey? Stating this explicitly will help you when making
decisions about the content and the layout of the figure.

Thirdly, what medium will be used to display the figure? Will it be displayed for a minute on a projector or
will it be printed in an article? The audience will have less time to absorb details from the former.

So suppose we wanted to create a figure intended for biologists, illustrating that there is not much variation
in the local GC content of Streptomyces coelicolor A3(2), building on the example in Data analysis (page 43).
Let us further suppose that the medium is in a printed journal where the figure can have a maximum width
of 89 mm.

First of all make sure that you are in the S.coelicolor-local-GC-content directory created in Data analysis
(page 43).

$ cd S.coelicolor-local-GC-content

Now create a file named local_gc_content_figure.R and add the R code below to it.

library("ggplot2")

df = read.csv("local_gc_content.csv", header=T)

g1 = ggplot(df, aes(x=middle, y=gc_content))
g2 = g1 + geom_line()

ggsave("local_gc_content.png", width=89, height=50, units="mm")

The code above loads the data and plots it as a line, resulting in a local GC content plot. Note also that we
specify the width and height of the plot in millimeters in the ggsave() function.

Let’s try it out.

$ Rscript local_gc_content_figure.R

It should create a file named local_gc_content.png containing the image in Fig. 8.9.

The scale of the y-axis makes the plot misleading. It looks like there is a lot of variation in the data. Let’s
expand the y range to span from 0 to 100 percent (Fig. 8.10).

library("ggplot2")

df = read.csv("local_gc_content.csv", header=T)

g1 = ggplot(df, aes(x=middle, y=gc_content))
g2 = g1 + geom_line()
g3 = g2 + ylim(0, 100)

76 Chapter 8. Data visualisation

The Biologist’s Guide to Computing, Release 0.9.1

Fig. 8.9: Initial attempt at plotting local GC content.

ggsave("local_gc_content.png", width=89, height=50, units="mm")

At the moment it looks like the line is floating in mid-air. This is because ggplot adds some padding to the
limits. Let’s turn this off (Fig. 8.11).

library("ggplot2")

df = read.csv("local_gc_content.csv", header=T)

g1 = ggplot(df, aes(x=middle, y=gc_content))
g2 = g1 + geom_line()
g3 = g2 + ylim(0, 100)
g4 = g3 + coord_cartesian(expand=FALSE)

ggsave("local_gc_content.png", width=89, height=50, units="mm")

The labels on the x-axis are a bit difficult to read. To make it easier to understand the content of the x-axis
let’s scale it to use kilobases as its units (Fig. 8.12).

library("ggplot2")

df = read.csv("local_gc_content.csv", header=T)

g1 = ggplot(df, aes(x=middle, y=gc_content))
g2 = g1 + geom_line()
g3 = g2 + ylim(0, 100)
g4 = g3 + coord_cartesian(expand=FALSE)
g5 = g4 + scale_x_continuous(labels=function(x)x/1000)

ggsave("local_gc_content.png", width=89, height=50, units="mm")

8.13. Conveying amessage to an audience 77

The Biologist’s Guide to Computing, Release 0.9.1

Fig. 8.10: Local GC content with y-axis scaled corretly.

Fig. 8.11: Local GC content without padding.

78 Chapter 8. Data visualisation

The Biologist’s Guide to Computing, Release 0.9.1

In the above function(x)x/1000 is a function definition. The function returns the input (x) divided by 1000.
In this case the function is passed anonymously (the function is not given a name) to the labels argument
of the scale_x_continuous() function.

Fig. 8.12: Local GC content with kilobases as the x axis units.

Finally, let us add labels to the x-axis (Fig. 8.13).

library("ggplot2")

df = read.csv("local_gc_content.csv", header=T)

g1 = ggplot(df, aes(x=middle, y=gc_content))
g2 = g1 + geom_line()
g3 = g2 + ylim(0, 100)
g4 = g3 + coord_cartesian(expand=FALSE)
g5 = g4 + scale_x_continuous(labels=function(x)x/1000)
g6 = g5 + xlab("Nucleotide position (KB)") + ylab("GC content (%)")

ggsave("local_gc_content.png", width=89, height=50, units="mm")

This is a good point to start tracking the local_gc_content_figure.R file in version control, see Keeping
track of your work (page 31) for more details.

$ git status
On branch master
Untracked files:

(use "git add <file>..." to include in what will be committed)

local_gc_content.png
local_gc_content_figure.R

nothing added to commit but untracked files present (use "git add" to track)

8.13. Conveying amessage to an audience 79

The Biologist’s Guide to Computing, Release 0.9.1

Fig. 8.13: Local GC content with labelled axis.

So we have two untracked files: the R script and the PNG file the R script generates. We do not want to track
the latter in version control as it can be generated from the script. Let us therefore update our .gitignore
file.

Sco.dna
local_gc_content.csv
local_gc_content.png

Let’s check the status of the Git repository now.

$ git status
On branch master
Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: .gitignore

Untracked files:
(use "git add <file>..." to include in what will be committed)

local_gc_content_figure.R

no changes added to commit (use "git add" and/or "git commit -a")

Great, let us add the local_gc_content_figure.R and .gitignore files and commit a snapshot.

$ git add local_gc_content_figure.R .gitignore
$ git commit -m "Added R script for generating local GC plot"
[master cba7277] Added R script for generating local GC plot
2 files changed, 13 insertions(+)

80 Chapter 8. Data visualisation

The Biologist’s Guide to Computing, Release 0.9.1

create mode 100644 local_gc_content_figure.R

8.14 Writing a caption
All figures require a caption to help the audience understand how to interpret the plot.

In this particular case two particular items stand out as missing from being able to interpret the plot. First
of all what is the source of the DNA, i.e. where is the data from? Secondly, what was the window and step
sizes of the sliding window analysis?

It would also be appropriate to explicitly state what the message of the plot is, i.e. that there is not much
variation in the local GC content. In this case we could further substantiate this claim by citing the mean
and standard deviation of the local GC content across the genome.

> df = read.csv("local_gc_content.csv", header=T)
> mean(df$gc_content)
[1] 72.13948
> sd(df$gc_content)
[1] 1.050728

Below is the final figure and its caption (Fig. 8.14). The caption has been added by the tool chain used to
build this book, not by R.

Fig. 8.14: There is little variation in the local GC content of Streptomyces coelicolor A3(2). Using a window
size of 100 KB and a step size of 50 KB the local GC content has a mean of 72.1% and a standard deviation
of 1.1%.

8.14. Writing a caption 81

The Biologist’s Guide to Computing, Release 0.9.1

8.15 Other useful tools for scripting the generation of figures
There are many different ways of visualising data and generating figures. A broad distinction can be made
between ad-hoc methods, usually using graphical user interfaces and button clicking, and methods that can
be automated, i.e. methods that can reproduce the figure without human intervention.

One take home message from this chapter is that you should automate the generation of your figures. This
will save you time when you realise that you need to alter the style of all the figures when submitting a
manuscript for publication. It will also make your research more reproducible.

Apart from R and ggplot2 there are several tools available for automating the generation of your figures.
In Python there is the matplotlib42 package, which is very powerful and it is a great tool for plotting data
generated from Python scripts. Gnuplot43 is a scripting language designed to plot data and mathematical
functions, it is particularly good at depicting three-dimensional data.

If you are dealing with graphs, as in evolutionary trees and metabolic pathways, it is worth having a look at
Graphviz.

A general purpose tool for manipulating images on the command line is ImageMagick. It can be used to
resize, crop and transform your images. It is a great tool for automating your image manipulation.

If you are wanting to visualise data in web pages it is worth investing some time looking at the various
JavaScript libraries available for data visualisation. One poplar option is D3.js44.

8.16 Key concepts
• R and ggplot2 are powerful tools for visualising data

• R should also be your first port of call for statistical computing (statistical computing is not covered in
this book)

• In ggplot2 the visual representation of your data is built up using layers

• Separating out different aspects of plotting into different layers makes it easier to reason about the
data and the best way to represent it visually

• Faceting allows you to separate out data on one or more variables, this is one of the strengths of ggplot2

• Scripting your data visualisation makes it easier to modify later on

• Scripting your data visualisation makes it reproducible

• When creating a figure ask yourself: who is the audience and what is the message

42 http://matplotlib.org/
43 http://www.gnuplot.info/
44 https://d3js.org/

82 Chapter 8. Data visualisation

http://matplotlib.org/
http://www.gnuplot.info/
https://d3js.org/

CHAPTER9

Collaborating on projects

In this chapter you will learn how to work collaboratively on projects using Git.

Collaborating using Git has several benefits. Changes to the documents are kept under version control giving
a transparent audit trail. Merging contributions from collaborators is simple, and automatic for all non-
conflicting changes. Furthermore, as Git is a distributed version control system the project becomes stored
on many different computers, on yours and your collaborators’ computers as well as on remote servers,
effectively backing up your code and text files.

Warning: Although you can store anything in Git it is bad practise to track large files such as genomes
and microscopy files in it.
It is bad practise in that large files makes it difficult to move the repository between different computers.
Furthermore, once a file has been committed to Git it is almost impossible to remove it to free up the
space.
Also, if you are using a free service to host your code it is impolite to use it as a backup system for your
raw data.
It is therefore good practise to add large files in your project to the .gitignore file.

9.1 Find a friend
The first step to collaboration is to have someone to collaborate with. If you have not already shared your
experiences of this book with anyone I suggest that you engage the person sitting next to you in the office as
soon as possible. Things are more fun when you work with others!

9.2 Get a GitHub or BitBucket account
Although you can host your own Git server I would strongly recommend making use of either GitHub45 or
BitBucket46 as your remote server for backing up your Git repositories.

Registration is free for both GitHub and BitBucket. GitHub gives you unlimited number of public repositories
and collaborators for free. However, you have to pay for private repositories. BitBucket allows you to have
private repositories for free, but limits the number of collaborators that you can have on these. Personally, I
started with BitBucket because I was ashamed of my code and did not want others to see it. Then I realised
that code did not have to be perfect to be useful and then I started using public GitHub repositories more

45 https://github.com/
46 https://bitbucket.org/

83

https://github.com/
https://bitbucket.org/

The Biologist’s Guide to Computing, Release 0.9.1

and more. It is up to you. However the rest of this chapter will make use of GitHub as a remote server, as it
is my current favorite.

9.3 Pushing the project to a remote server
Now that you have a GitHub/BitBucket account it is time to push the S.coelicolor-local-GC-content
project from the Data analysis (page 43) and Data visualisation (page 61) chapters to it.

Go to the web interface of your account and find the button that says something along the lines of “New
repostiory” or “Create repository”. Give the project the name S.coelicolor-local-GC-content and make
sure that the backend uses Git (if you are using BitBucket there is an option to use an alternative source
control management system named Mercurial) and that it is initialised as an empty repository (i.e. don’t tick
any checkboxes to add readme, licence or .gitignore files).

Now on your local computer (the one in front of you where you have been doing all the exercises from this
book so far) go into the directory containing the S.coelicolor-local-GC-content repository created in Data
analysis (page 43) and built on in Data visualisation (page 61).

$ cd S.coelicolor-local-GC-content

We now need to specify the remote repository. My user name on GitHub is tjelvar-olsson and the repository
I created on GitHub was named S.coelicolor-local-GC-content. To add a remote to my local repository
(the one on my computer) I use the command below.

Note: In the command below tjelvar-olsson is my GitHub user name.

$ git remote add origin \
https://github.com/tjelvar-olsson/S.coelicolor-local-GC-content.git

The command adds the GitHub URL as a remote named origin to the local repository. However, we have
not yet pushed any data to this remote. Let’s do this now.

$ git push -u origin master

The git push command pushes the changes made to the local repository to the remote repository (named
origin). In this case the last argument (master) specifies the specific branch to push to.

The -u option is the short hand for --set-upstream and is used to set up the association between your local
branch (master) and the branch on the remote. You only need to specify the -u option the first time you
push a local repository to a remote.

If you are using GitHub or BitBucket to host your remotes you do not need to remember these commands
as the web interface will display the commands you need to push an existing project to a newly created
repository.

84 Chapter 9. Collaborating on projects

The Biologist’s Guide to Computing, Release 0.9.1

What is a branch?

When one initialises a Git repository a default branch named master is created. In this book all work
has been done on the master branch.
However, it is possible to create new branches from any committed snapshot in the history. For exam-
ple before submitting a paper to Nature one might create a branch named nature. During the lengthy
review process one could then continue working on the master branch. After six months when the
reviewers come back with their comments one could then switch back to the nature branch and im-
plement all the suggested changes and send it back to the editor. At that point the nature branch will
have diverged from the master branch. The editor of Nature then comes back stating that in spite of
all the changes the manuscript will still be rejected due to the lack of a “wow” factor. At this point one
may want to submit to Science. However, one wants to incorporate all the changes made on the master
and the nature branch. That is not a problem as Git has a powerful system for merging changes. In this
case one could merge the nature branch back onto master. At that point one could take a new branch
named science from the master branch before submitting the manuscript to science, and so forth.
Although branching is powerful, it is beyond the scope of this book. If you are interested in learning
more about it I would recommend the free Learn Git course on codecademy.

https://www.codecademy.com/learn/learn-git

9.4 Collaboration using Git
Now it is time for your collaborator to get access to the repository. Use the web interface and your friend’s
GitHub/BitBucket user name to give them write access to the repository.

Now your friend should be able to clone the repository. Alternatively, if all your friends are busy or un-
interested you can clone the repository on a different computer or in a different directory to simulate the
collaboration process by working on the same project in two different locations.

$ git clone git@github.com:tjelvar-olsson/S.coelicolor-local-GC-content.git
Cloning into 'S.coelicolor-local-GC-content'...
remote: Counting objects: 8, done.
remote: Compressing objects: 100% (7/7), done.
remote: Total 8 (delta 0), reused 8 (delta 0), pack-reused 0
Receiving objects: 100% (8/8), done.
Checking connectivity... done.

The command above clones my S.coelicolor-local-GC-content.git repository. You will need to replace
tjelvar-olsson with your user name. Alternatively, have a look in the web interface for a string that can be
used to clone the repository.

Now that your friend has cloned your repository it is time for him/her to add something to it. Create the file
README.md and add the markdown text below to it.

Local GC content variation in *S. coelicolor*

Project investigating the local GC content of the
Streptomyces coelicolor A3(2) genome.

Now let your friend add the README.md file to the repository and commit a snapshot of the repository.

$ git add README.md
$ git commit -m "Added readme file"
[master a531ea4] Added readme file
1 file changed, 4 insertions(+)
create mode 100644 README.md

9.4. Collaboration using Git 85

https://www.codecademy.com/learn/learn-git

The Biologist’s Guide to Computing, Release 0.9.1

Finally, your friend can push the changes to the remote repository.

$ git push
Counting objects: 3, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 384 bytes | 0 bytes/s, done.
Total 3 (delta 1), reused 0 (delta 0)
To https://github.com/tjelvar-olsson/S.coelicolor-local-GC-content.git

cba7277..a531ea4 master -> master

Have a look at the repository in the using the GitHub/BitBucket web interface. You should be able to see the
changes reflected there.

Now look at your local repository. You will not see your friends changes reflected there yet, because you
have not yet pulled from the remote. It is time for you to do that now. Run the git pull command in your
local repository.

$ git pull
remote: Counting objects: 3, done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 3 (delta 1), reused 3 (delta 1), pack-reused 0
Unpacking objects: 100% (3/3), done.
From github.com:tjelvar-olsson/S.coelicolor-local-GC-content

cba7277..a531ea4 master -> origin/master
Updating cba7277..a531ea4
Fast-forward
README.md | 4 ++++
1 file changed, 4 insertions(+)
create mode 100644 README.md

You have now successfully pulled in the contributions from your friend into your local repository. Very cool
indeed!

Let’s go over what happened again.

1. You created a new repository on GitHub

2. You added this repository as a remote to your local repository

3. You pushed the content of your local repository to the remote on GitHub

4. Your friend cloned your GitHub repository, creating a local repository on their machine

5. Your friend committed changes to their local repository

6. Your friend pushed the changes from their local repository to the remote on GitHub

7. You pulled in your friend’s changes from the remote on GitHub to your local repository

9.5 Working in parallel
The workflow described above was linear. You did some work, you friend cloned your work, your friend did
some work, you pulled your friends work. What if you both worked on the project in parallel in your local
repositories, how would that work?

Let’s try it out. In your local repository add some information on how to download the genome to the
README.md file.

86 Chapter 9. Collaborating on projects

The Biologist’s Guide to Computing, Release 0.9.1

Local GC content variation in *S. coelicolor*

Project investigating the local GC content of the
Streptomyces coelicolor A3(2) genome.

Download the genome using ``curl``.

```
$ curl --location --output Sco.dna http://bit.ly/1Q8eKWT
```

Now commit these changes.

$ git add README.md
$ git commit -m "Added info on how to download genome"
[master 442c433] Added info on how to download genome
1 file changed, 6 insertions(+)

Now your friend tries to work out what the gc_content.py and the local_gc_content_figure.R scripts do.
The names are not particularly descriptive so he/she looks at the code and works out that the gc_content.py
script produces a local GC content CSV file from the genome and that the local_gc_content_figure.R
script produces a local GC plot from the CSV file. Your friend therefore decides to rename these scripts to
dna2csv.py and csv2png.R.

$ git mv gc_content.py dna2csv.py
$ git mv local_gc_content_figure.R csv2png.R
$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

renamed: local_gc_content_figure.R -> csv2png.R
renamed: gc_content.py -> dna2csv.py

$ git commit -m "Improved script file names"
[master 1f868ad] Improved script file names
2 files changed, 0 insertions(+), 0 deletions(-)
rename local_gc_content_figure.R => csv2png.R (100%)
rename gc_content.py => dna2csv.py (100%)

At this point your friend pushes their changes to the GitHub remote.

$ git push
Counting objects: 2, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (2/2), 351 bytes | 0 bytes/s, done.
Total 2 (delta 0), reused 0 (delta 0)
To git@github.com:tjelvar-olsson/S.coelicolor-local-GC-content.git

a531ea4..1f868ad master -> master

Now you realise that you have not pushed the changes that you made to the README.md file to the GitHub
remote. You therefore try to do so.

$ git push
To https://github.com/tjelvar-olsson/S.coelicolor-local-GC-content.git
! [rejected] master -> master (fetch first)
error: failed to push some refs to 'https://github.com/tjelvar-olsson/...'

9.5. Working in parallel 87

The Biologist’s Guide to Computing, Release 0.9.1

hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

Rejected? What is going on? Well, it turns out that the “hints” give us some useful information. They
inform us that the update was rejected because the remote contained work that we did not have in our local
repository. It also suggests that we can overcome this by using git pull, which would pull in your friends
updates from the GitHub remote and merge them with your local updates.

$ git pull

Now unless you have defined an alternative editor as your default (using the $EDITOR environment variable)
you will be dumped into a vim session with the text below in the editor.

Merge branch 'master' of https://github.com/tjelvar-olsson/...

Please enter a commit message to explain why this merge is necessary,
especially if it merges an updated upstream into a topic branch.
#
Lines starting with '#' will be ignored, and an empty message aborts
the commit.

To accept these changes you need to save the file and exit the editor (in Vim Esc followed by :wq). Once this
is done you will be dumped back into your shell.

$ git pull
remote: Counting objects: 2, done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 2 (delta 0), reused 2 (delta 0), pack-reused 0
Unpacking objects: 100% (2/2), done.
From https://github.com/tjelvar-olsson/S.coelicolor-local-GC-content

a531ea4..1f868ad master -> origin/master
Merge made by the 'recursive' strategy.
local_gc_content_figure.R => csv2png.R | 0
gc_content.py => dna2csv.py | 0
2 files changed, 0 insertions(+), 0 deletions(-)
rename local_gc_content_figure.R => csv2png.R (100%)
rename gc_content.py => dna2csv.py (100%)

Note that Git managed to work out how to merge these changes together automatically. Let’s have a look at
the history.

$ git log --oneline
a5779d6 Merge branch 'master' of https://github.com/tjelvar-olsson/S.coelicolor-local-GC-content
1f868ad Improved script file names
442c433 Added info on how to download genome
a531ea4 Added readme file
cba7277 Added R script for generating local GC plot
6d8e0cf Initial file import

Now we should now be able to push to the GitHub remote.

$ git push
Counting objects: 5, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (5/5), done.
Writing objects: 100% (5/5), 765 bytes | 0 bytes/s, done.

88 Chapter 9. Collaborating on projects

The Biologist’s Guide to Computing, Release 0.9.1

Total 5 (delta 2), reused 0 (delta 0)
To https://github.com/tjelvar-olsson/S.coelicolor-local-GC-content.git

1f868ad..a5779d6 master -> master

Collaboratively working on projects in parallel, really cool stuff!

Let’s go over what happened.

1. You committed some changes to your local repository

2. Your friend committed some changes to their local repository

3. Your friend pushed their changes to the GitHub remote

4. You tried, but failed, to push your changes to the GitHub remote

5. You pulled in your friend’s changes from the GitHub remote

6. Git automatically worked out how to merge these changes with yours

7. You pushed the merged changes to the remote

9.6 Resolving conflicts
So far so good, but what happens if both you and your friend edit the same part of the same file in your local
repositories? How does Git deal with this? Let’s try it out.

First of all your friend pulls in your changes from the GitHub remote. By pulling your friend ensures that
he/she is working on the latest version of the code.

$ git pull
remote: Counting objects: 5, done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 5 (delta 2), reused 5 (delta 2), pack-reused 0
Unpacking objects: 100% (5/5), done.
From github.com:tjelvar-olsson/S.coelicolor-local-GC-content

1f868ad..a5779d6 master -> origin/master
Updating 1f868ad..a5779d6
Fast-forward
README.md | 6 ++++++
1 file changed, 6 insertions(+)

Your friend then edits the README.md file.

Local GC content variation in *S. coelicolor*

Project investigating the local GC content of the
Streptomyces coelicolor A3(2) genome.

Download the genome using ``curl``.

```
$ curl --location --output Sco.dna http://bit.ly/1Q8eKWT
```

Generate local GC content csv file from the genome.

```
$ python dna2csv.py
```

9.6. Resolving conflicts 89

The Biologist’s Guide to Computing, Release 0.9.1

Your friend then commits and pushes these changes.

$ git add README.md
$ git commit -m "Added info on how to generate local GC content CSV"
[master 9f41c21] Added info on how to generate local GC content CSV
1 file changed, 6 insertions(+)
$ git push
Counting objects: 3, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 399 bytes | 0 bytes/s, done.
Total 3 (delta 2), reused 0 (delta 0)
To git@github.com:tjelvar-olsson/S.coelicolor-local-GC-content.git

a5779d6..9f41c21 master -> master

Now you work on your local repository. You too are concerned with giving more detail about how to make
use of the scripts so you edit your local copy of the README.md file.

Local GC content variation in *S. coelicolor*

Project investigating the local GC content of the
Streptomyces coelicolor A3(2) genome.

Download the genome using ``curl``.

```
$ curl --location --output Sco.dna http://bit.ly/1Q8eKWT
```

Data processing.

```
$ python dna2csv.py
$ Rscript csv2png.R
```

And you commit the changes to your local repository.

$ git add README.md
[-- olssont@ exit=0 S.coelicolor-local-GC-content --]
$ git commit -m "Added more info on how to process data"
[master 2559b5d] Added more info on how to process data
1 file changed, 7 insertions(+)

However, when you try to push you realise that your friend has pushed changes to the remote.

$ git push
Username for 'https://github.com': tjelvar-olsson
Password for 'https://tjelvar-olsson@github.com':
To https://github.com/tjelvar-olsson/S.coelicolor-local-GC-content.git
! [rejected] master -> master (fetch first)
error: failed to push some refs to 'https://github.com/tjelvar-olsson/...'
hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

So you pull.

90 Chapter 9. Collaborating on projects

The Biologist’s Guide to Computing, Release 0.9.1

$ git pull
remote: Counting objects: 3, done.
remote: Compressing objects: 100% (1/1), done.
remote: Total 3 (delta 2), reused 3 (delta 2), pack-reused 0
Unpacking objects: 100% (3/3), done.
From https://github.com/tjelvar-olsson/S.coelicolor-local-GC-content

a5779d6..9f41c21 master -> origin/master
Auto-merging README.md
CONFLICT (content): Merge conflict in README.md
Automatic merge failed; fix conflicts and then commit the result.

The automatic merge failed! The horror!

Let’s find out what the status of the repository is.

$ git status
On branch master
Your branch and 'origin/master' have diverged,
and have 1 and 1 different commit each, respectively.

(use "git pull" to merge the remote branch into yours)
You have unmerged paths.

(fix conflicts and run "git commit")

Unmerged paths:
(use "git add <file>..." to mark resolution)

both modified: README.md

no changes added to commit (use "git add" and/or "git commit -a")

Okay, so both you and your friend have been editing the README.md file. Let’s have a look at it.

Local GC content variation in *S. coelicolor*

Project investigating the local GC content of the
Streptomyces coelicolor A3(2) genome.

Download the genome using ``curl``.

```
$ curl --location --output Sco.dna http://bit.ly/1Q8eKWT
```

<<<<<<< HEAD
Data processing.

```
$ python dna2csv.py
$ Rscript csv2png.R
=======
Generate local GC content csv file from the genome.

```
$ python dna2csv.py
>>>>>>> 9f41c215cce3500e80c747426d1897f93389200c
```

So Git has created a “merged” file for us and highlighted the section that is conflicting. In the above the first
highlighted region contains the changes from the HEAD in your local repository and the second highlighted

9.6. Resolving conflicts 91



The Biologist’s Guide to Computing, Release 0.9.1

region shows the changes from your friend’s commit 9f41c21.

Now you need to edit the file so that you are happy with it. Your friend’s idea of documenting what the
command does is a good one so you could edit the README.md file to look like the below.

# Local GC content variation in *S. coelicolor*

Project investigating the local GC content of the
*Streptomyces coelicolor* A3(2) genome.

Download the genome using ``curl``.

```
$ curl --location --output Sco.dna http://bit.ly/1Q8eKWT
```

Generate ``local_gc_content.csv`` file from ``Sco.dna`` file.

```
$ python dna2csv.py
```

Generate ``local_gc_content.png`` file from ``local_gc_content.csv`` file.

```
$ Rscript csv2png.R
```

Now you need to add and commit these changes.

$ git add README.md
[-- olssont@ exit=0 S.coelicolor-local-GC-content --]
$ git commit -m "Manual merge of readme file"
[master 857b470] Manual merge of readme file

Now that you have merged the changes you can push to the remote.

$ git push
Counting objects: 6, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (6/6), done.
Writing objects: 100% (6/6), 708 bytes | 0 bytes/s, done.
Total 6 (delta 4), reused 0 (delta 0)
To https://github.com/tjelvar-olsson/S.coelicolor-local-GC-content.git

9f41c21..857b470 master -> master

Let’s go over what just happened.

1. Your friend pulled in your changes from the GitHub remote

2. Your friend edited the README.md file

3. Your friend committed and pushed their changes to the remote

4. You edited the README.md file in your local repository

5. You committed the changes to your local repository

6. You tried but failed to push to the GitHub remote repository

7. You pulled the changes from the GitHub remote repository; but the automatic merging failed

8. You looked at the status of your local repository to find out what state it was in

92 Chapter 9. Collaborating on projects



The Biologist’s Guide to Computing, Release 0.9.1

9. You resolved the conflicts manually by editing the README.md file

10. You added the updated README.md file to the staging area and committed it

11. You pushed your manual merge to the GitHub remote repository

That’s it, you now have all the tools you need to start collaborating with your colleagues using Git! May the
force be with you.

9.7 Key concepts
• Git is a powerful tool for collaborating on projects

• Every person working on a Git project have all the files on their local computer

• By adding a remote to a local repository one can push updates to another repository (the remote)

• It is also possible to pull changes from a remote

• One way to collaborate using Git is to have multiple people pulling from and pushing to the same
remote repository

• It is only possible to push to a remote if you have all the updates that are on the remote in your local
repository

• When pulling Git will do its best to resolve any conflicts between your local updates and updates from
the remote

• If there are conflicts that Git cannot resolve you have to fix them manually

• By pushing your updates to a remote server such as GitHub you are effectively backing up your project

9.7. Key concepts 93



The Biologist’s Guide to Computing, Release 0.9.1

94 Chapter 9. Collaborating on projects



CHAPTER10

Creating scientific documents

Communication forms an important part of the scientific process. In Collaborating on projects (page 83) we
added a README.md file describing the purpose of the project and how to perform the analysis. This is a good
thing. However it may not be clear how this process can be extended to produce scientific documents with
figures, equations and reference management. In this chapter we will learn how to do this.

10.1 Starting themanuscript
Here we will build on the work from Data analysis (page 43), Data visualisation (page 61) and Collaborating
on projects (page 83) chapters. Let’s start by going into the S.coelicolor-local-GC-content directory.

$ cd S.coelicolor-local-GC-content

Now use your favorite text editor to add the text below to a file named manuscipt.md.

## Introduction

*Streptomyces coelicolor* is a bacteria that can produce a range of natural
products of pharmaceutical relevance.

In 2002 the genome of *S. coelicolor* A3(2), the model actinomycete
organism, was sequenced. In this study we investigate the local GC content
of this organism.

## Methodology

The genome of *S. coelicolor* A3(2) was downloaded from the Sanger Centre
ftp site.

The local GC content was then calculated using a sliding window of 100 KB
and a 50 KB step size.

## Results

The mean of the local GC content is 72.1% with a standard deviation of 1.1.

## Conclusion

There is little variation in the local GC content of *S. coelicolor* A3(2).

95



The Biologist’s Guide to Computing, Release 0.9.1

The manuscript above won’t make it into Nature, but it will do for us to illustrate how to build up a
manuscript using plain text files.

In terms of the markdown syntax the two hashes ## are used to mark level 2 headings and the words
surrounded by asterisk symbols (*) will be emphasized using italic font.

10.2 Converting the document to HTML using pandoc
Markdown is a lightweight syntax that can easily be converted to HTML. Here we will use of the tool Pandoc48

to convert the markdown document to HTML.

First of all you will need to install Pandoc. Generic information on how to install software can be found in
Managing your system (page 137). On a Mac you can use Homebrew and on Linux based systems it should
be available for install using the distributions package manager. For more detail have a look at the Pandoc
installation notes49.

Now that we have installed Pandoc, let’s use it to convert our manuscript.md file to a standalone HTML file.

$ pandoc -f markdown -t html -s manuscript.md > manuscript.html

In the above the -f markdown option means from markdown and the -t html option means to html. The -s
option means standalone, i.e. encapsulate the content with appropriate appropriate headers and footers.

Pandoc writes to the standard output stream so we redirect it (>) to a file named manuscript.html. Have a
look at the manuscript.html file using a web browser.

Alternatively, we could have used the -o option to specify the name of an output file. The command below
produces the same outcome as the previous command.

$ pandoc -f markdown -t html -s manuscript.md -o manuscript.html

Now use a web browser to view the generated manuscript.html file.

10.3 Adding a figure
At this point it would be good to add the figure produced in Data visualisation (page 61) to the “Results”
section of the manuscript.

In markdown images can be added using the syntax below.

![Alternative text](path/to/image.png)

In HTML the intention of the alternative text (the “alt” attribute) is to provide a descriptive text in case the
image cannot be displayed for some reason. Pandoc makes use of the alternative text attribute to create a
caption for the image.

## Results

The mean of the local GC content is 72.1% with a standard deviation of 1.1.

![**Variation in the local GC content of *S. coelicolor* A3(2).** Using a
window size of 100 KB and a step size of 50 KB the local GC content has a
mean of 72.1% and a standard deviation of 1.1.](local_gc_content.png)

48 http://pandoc.org/
49 http://pandoc.org/installing.html

96 Chapter 10. Creating scientific documents

http://pandoc.org/
http://pandoc.org/installing.html
http://pandoc.org/installing.html


The Biologist’s Guide to Computing, Release 0.9.1

In the above the double asterix (**) is used as markup for bold text. This will serve as a title for the figure
caption.

Now we can build the document again.

$ pandoc -f markdown -t html -s manuscript.md -o manuscript.html

10.4 Converting the document to PDF
HTML is great for websites. However, scientific documents tend to be read as PDF. Let us use Pandoc to
convert our document to PDF.

However, before we can do this we need to install LaTeX50. On Mac install MacTeX51. On Linux use you
package manager to install LaTeX, possibly known as “TeX Live”. See the section on Obtaining LaTeX52 on
the LaTeX project website for more information.

Now that you have installed LaTeX you can convert the manuscript.md markdown file to PDF using the
command below.

$ pandoc -f markdown -t latex -s manuscript.md -o manuscript.pdf

In the above we use the -t latex option to specify that the manuscript.pdf output file should be built using
LaTeX.

10.5 Referencemanagement
Reference management is a particularly prominent feature of scientific writing. Let us therefore look at how
we can include references to websites and papers in our document.

Let’s start by creating a bibliography file. Copy and paste the content below into a file named
references.bib.

@online{S.coelicolor-genome,
title={{S. coelicolor genome}},
url={ftp://ftp.sanger.ac.uk/pub/project/pathogens/S_coelicolor/whole_genome/},
urldate={2016-07-10}
}

This is a so called BibTex record. In this particular case it is a BibTex record for an online resource, as
indicated by the @online type. You would also use the @online type to reference web pages.

The text S.coelicolor-genome is the “key” assigned to this record. The key could have been called anything
as long as it is unique. This key will be used within our document when citing this record.

Now append the text below to the bottom of the references.bib file.

@article{Bentley2002,
title={Complete genome sequence of the model actinomycete

Streptomyces coelicolor A3 (2)},
author={Bentley, Stephen D and Chater, Keith F and Cerdeno-Tarraga, A-M and

Challis, Greg L and Thomson, NR and James, Keith D and
Harris, David E and Quail, Michael A and Kieser, H and
Harper, David and others},

50 https://www.latex-project.org
51 http://www.tug.org/mactex
52 https://latex-project.org/ftp.html

10.4. Converting the document to PDF 97

https://www.latex-project.org
http://www.tug.org/mactex
https://latex-project.org/ftp.html


The Biologist’s Guide to Computing, Release 0.9.1

journal={Nature},
volume={417},
number={6885},
pages={141--147},
year={2002},
publisher={Nature Publishing Group}
}

Do not type in BibTex records by hand. The entire Bentley2002 record was copied and pasted from Google
Scholar53. Note that in the record above the identifier was changed from bentley2002complete (key used by
Google Scholar) to Bentley2002.

References managers such as Mendeley54 and Zotero55 can also be used to export BibTex records. More
suggestions on how to access BitTex records can be found on the Tex StackExchange56 site.

Now let’s add some references to our manuscript.md file.

## Introduction

*Streptomyces coelicolor* is a bacteria that can produce a range of natural
products of pharmaceutical relevance.

In 2002 the genome of *S. coelicolor* A3(2), the model actinomycete
organism, was sequenced [@Bentley2002].

In this study we investigate the local GC content of this organism.

## Methodology

The genome of *S. coelicolor* A3(2) was downloaded from the Sanger Centre
ftp site [@S.coelicolor-genome].

Now we can add referenes using Pandoc’s built in pandoc-citeproc filter.

$ pandoc -f markdown -t latex -s manuscript.md -o manuscript.pdf \
--filter pandoc-citeproc --bibliography=references.bib

The --filter pandoc-citeproc argument results in automatically adding citations and a bibliography to
the document. However, this requires some knowledge of where the bibliographic information is, this is
specified using the --bibliography=references.bib argument.

“CiteProc” is in fact a generic name for a program that can be used to produce citations and bibliographies
based on formatting rules using the Citation Style Langauge (CSL) syntax. Zotero provides CSL styles for
lots of journals in the Zotero Style Repository57.

Let’s download Zotero’s CSL file for Nature, copy and paste this text into a file named nature.csl.

$ curl https://www.zotero.org/styles/nature > nature.csl

We can now produce our document using Nature’s citation style.

$ pandoc -f markdown -t latex -s manuscript.md -o manuscript.pdf \
--filter pandoc-citeproc --bibliography=references.bib \
--csl=nature.csl

53 https://scholar.google.co.uk/
54 https://www.mendeley.com
55 https://www.zotero.org/
56 http://tex.stackexchange.com/a/207
57 https://www.zotero.org/styles

98 Chapter 10. Creating scientific documents

https://scholar.google.co.uk/
https://scholar.google.co.uk/
https://www.mendeley.com
https://www.zotero.org/
http://tex.stackexchange.com/a/207
https://www.zotero.org/styles


The Biologist’s Guide to Computing, Release 0.9.1

Have a look at the generated PDF file. Pretty neat right?! One thing that is missing is a title for the reference
section. Let’s add that to the manuscript.md file.

## Conclusion

There is little variation in the local GC content of *S. coelicolor* A3(2).

## References

10.6 Addingmeta data
To turn this into a research article we need to add a title, authors, an abstract and a date. In Pandoc this can
be achieved by adding meta data to the top of the file, using a YAML syntax (see Useful plain text file formats
(page 25) for information on YAML).

Add the header below to the top of the manuscript.md file.

---
title: "*S. coelicolor* local GC content analysis"
author: Tjelvar S. G. Olsson and My Friend
abstract: |

In 2002 the genome of *S. coelicolor* A3(2), the model actinomycete
organism, was sequenced.

The local GC content was calculated using a sliding window of
100 KB and a 50 KB step size.

The mean of the local GC content was found to be 72.1% with a standard
deviation of 1.1. We therefore conclude that there is little variation
in the local GC content of *S. coelicolor* A3(2).

date: 25 July 2016
---
## Introduction

Let’s give some explanation of the meta data above. The YAML meta data is encapsulated using ---. The title
string is quoted to avoid the * symbols confusing Pandoc. The pipe symbol at the beginning of the abstract
allows for multi-line input with newlines, note that the multi-lines must be indented.

Let’s generate the document again.

$ pandoc -f markdown -t latex -s manuscript.md -o manuscript.pdf \
--filter pandoc-citeproc --bibliography=references.bib \
--csl=nature.csl

The manuscript.pdf document is now looking pretty good!

Anther useful feature of Pandoc’s meta data section is that we can add information for some of the data that
we previously had to specify on the command line. Let’s add items for the --bibliograpy and --csl options
(these options are in fact short hand for --metadata bibliograpy=FILE and --metadata csl=FILE).

date: 25 July 2016
bibliography: references.bib
csl: nature.csl
---
## Introduction

Now we can generate the documentation using the command below.

10.6. Addingmeta data 99



The Biologist’s Guide to Computing, Release 0.9.1

$ pandoc -f markdown -t latex -s manuscript.md -o manuscript.pdf \
--filter pandoc-citeproc

This is a good point to commit a snapshot to version control. Let’s look at the status of our repository first.

$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
Untracked files:

(use "git add <file>..." to include in what will be committed)

bioinformatics.csl
manuscript.html
manuscript.md
manuscript.pdf
nature.csl
references.bib

nothing added to commit but untracked files present (use "git add" to track)

We have created many new files. We want to track all of them except manuscript.pdf and manuscript.html
as they can be generated by Pandoc. Let us therefore update the .gitignore file to look like the below.

manuscript.*
!manuscript.md

Sco.dna
local_gc_content.csv
local_gc_content.png

In the above the first two lines are new. Let’s explain what they do. The first line states that all files
starting with manuscript. should be ignored. This includes the file we want to track manuscript.md. On the
second line we therefore add an exception for this file, the exclamation mark (!) is used to indicate that the
manuscript.md should be excluded from the previous rule to ignore it.

$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: .gitignore

Untracked files:
(use "git add <file>..." to include in what will be committed)

bioinformatics.csl
manuscript.md
nature.csl
references.bib

no changes added to commit (use "git add" and/or "git commit -a")

Now we can add the remaining files and commit the snapshot.

$ git add bioinformatics.csl manuscript.md nature.csl references.bib
$ git commit -m "Added draft manuscript"
[master 7b06d9d] Added draft manuscript

100 Chapter 10. Creating scientific documents



The Biologist’s Guide to Computing, Release 0.9.1

4 files changed, 332 insertions(+)
create mode 100644 bioinformatics.csl
create mode 100644 manuscript.md
create mode 100644 nature.csl
create mode 100644 references.bib

Finally, let us also add and commit the updated .gitignore file.

$ git add .gitignore
$ git commit -m "Updated gitignore to ignore generated manuscript files"
[master bea89f4] Updated gitignore to ignore generated manuscript files
1 file changed, 3 insertions(+)

10.7 Benefits of using Pandoc and plain text files
Why go through all this trouble to produce a PDF document? Would it not be easier to simply write it using
a word processor and export it as PDF?

There are three main advantages to the methodology outlined in this chapter.

1. There are lots of awesome tools for working with plain text files. If you decide to create your
manuscript using plain text files you can take advantage of them. Worthy of special mention is Git
which is one of the most powerful collaboration tools in the world, with the added advantage of giving
you unlimited undo functionality and a transparent audit trial.

2. Automation! We will go into this more in the next chapter, Automation is your friend (page 103).
However, for now imagine that someone discovered that there was something wrong with the raw
data that you had been using. How long would it take you to update your manuscript? Using plain
text files it is possible to create automated work flows to build entire documents from raw data.

3. Ability to convert to any file format. We have already seen how you can covert the document to HTML.
What if your collaborator really needs Word? No problem.

$ pandoc -f markdown -t docx -s manuscript.md -o manuscript.docx \
--filter pandoc-citeproc

Incidentally, another advantage of learning to use Pandoc is that it is not limited in going from markdown to
other formats. It can take almost any file format and convert it to any other file format. For example, one
could convert the Word document we just created to TeX.

$ pandoc -f docx -t latex manuscript.docx -o manuscript.tex

10.8 Alternative plain text approaches
There are other methods of creating scientific documents using plain text files.

One option is to write them using the LaTeX syntax. This is a less intuitive than using markdown. However,
it gives you a bit more control and flexibility.

A good alternative for people that miss the benefits of a graphical user interface (GUI) is LyX58. LyX allows
you to write and format text using an intuitive GUI. It is different from many other word processing tools in
that it places more focus on the structure of the document and less focus on the appearance. The outputs
of LyX are also plain text files, a derivative of LaTeX files. However, LyX also has built-in functionality for
exporting files in a variety of file formats including PDF.

58 https://www.lyx.org/

10.7. Benefits of using Pandoc and plain text files 101

https://www.lyx.org/


The Biologist’s Guide to Computing, Release 0.9.1

10.9 Using non-plain text file formats
This chapter has outlined how you can work with plain text file formats to produce scientific documents.
However, many people really like using Microsoft Word. You might be one of these people. In this case I
hope that this chapter has given you some food for thought. The purpose of this chapter was not to try to
force you to change your habits, but to outline alternative methods.

There are some disadvantages to using Microsoft Word. The biggest one probably being collaborative editing.
You tend to end up with files named along the lines of manuscript_revision3_TO_edits.docx being emailed
around. This is not ideal. However, on the other hand if it is the tool that you and/or your collaborators are
familiar with it is easy to work with.

If you and/or your collaborators do not want to use plain text files, but want to avoid emailing Word docu-
ments around, you may want to consider Google Docs59. It is similar to Word and LyX in that it has a GUI.
Furthermore, it has built in support for collaborative working and version control.

For an extended discussion on the pros and cons of various ways of creating scientific documents I would
recommend reading Good Enough Practices in Scientific Computing60. One of the key take home messages
from this paper is for everyone involved to agree on the tools before starting the process of writing.

10.10 Key concepts
• Pandoc is a powerful tool that can be used to convert (almost) any document format to any other

• Markdown can be used to add document structure to plain text files

• The pandoc-citeproc filter can be used to add citations and a bibliography

• The Citation Style Language (CSL) can be used to format the citations and the bibliography

• You can access BibTex records from Google Scholar

• Mendeley and Zotero are a free reference managers that can be used to export BibTex records (try to
avoid having to type out BibTex records by hand)

• Zotero provides CSL citation style files for lots and lots of journals

• It is possible to add YAML meta data to markdown files specifying attributes such as title, author and
abstract

• Using plain text files for scientific documents allows you to make use of awesome tools such as Git

• Speak to your collaborators and agree on the tools that best suit your needs

59 https://docs.google.com
60 https://arxiv.org/abs/1609.00037

102 Chapter 10. Creating scientific documents

https://docs.google.com
https://arxiv.org/abs/1609.00037


CHAPTER11

Automation is your friend

Have you ever felt your heart sink upon reading the reviewer comments along the lines of: “very nice analysis,
but it would be useful if it was performed on species x, y and z as well”? Or perhaps you have spent weeks
analysing data and generating figures only to find out that a newer and more complete data set has become
available?

In these circumstances would it not be nice if all you had to do was point your project at a new URL from
where the latest version of the data could be downloaded and all the analyses, figures and the manuscript
were magically updated for you?

This is possible! In this chapter we will make use of a tool called make to automate all the steps from Data
analysis (page 43), Data visualisation (page 61) and Creating scientific documents (page 95).

11.1 Introduction to make
The make tool is commonly used to build software. As such make is a tool for managing dependencies in a
build system, where dependencies are organised into a tree (as in a graph). People in the software industry
often talk about dependency graphs.

The make program makes use of a file named Makefile in the working directory. A “Makefile” contains rules.
Each rule consists of a target (the stuff to be created), prerequisites (the stuff needed to build the target)
and a recipe (the instructions for how to create the target from the prerequisites).

Creating rules in a file named Makefile is therefore a means to create an automated build process.

11.2 Creating a Makefile
First of all ensure that you are in the S.coelicolor-local-GC-content directory created in Data analysis
(page 43).

$ cd S.coelicolor-local-GC-content

One of the first steps in Data analysis (page 43) was to download the S. coelicolor genome. Let’s start by
creating a rule for this step. Using your favorite text editor create a file named Makefile and add the content
below to it.

Sco.dna:
curl --location --output Sco.dna http://bit.ly/1Q8eKWT

103



The Biologist’s Guide to Computing, Release 0.9.1

Warning: The make program expects the lines to be indented using the Tab character so make sure that
the curl command is preceded by a Tab character and not a bunch of white spaces.

In this first rule Sco.dna is the target. The target has no prerequisites and the recipe has one instruction to
download the file using curl.

Now we can run the make command.

$ make
make: `Sco.dna' is up to date.

Let’s add another rule for cleaning up the working directory.

Sco.dna:
curl --location --output Sco.dna http://bit.ly/1Q8eKWT

clean:
rm Sco.dna

When invoking make it is possible to specify which rule to run. Let’s clean up.

$ make clean
rm Sco.dna

If we run make now it will notice that the Sco.dna file does not exist and will download it.

$ make
curl --location --output Sco.dna http://bit.ly/1Q8eKWT

Now we need a rule to create the local_gc_content.csv (the target) from the Sco.dna file (the prerequisite).
Add the lines below to the top of the Makefile.

local_gc_content.csv: Sco.dna
python dna2csv.py

Now update the clean rule.

clean:
rm Sco.dna
rm local_gc_content.csv

Let’s clean up again.

$ make clean
rm Sco.dna
rm local_gc_content.csv

Now we have removed Sco.dna and local_gc_content.csv. This is a good opportunity to show that make
resolves dependencies. We can do this by calling the local_gc_content.csv rule, this will in turn call the
Sco.dna rule.

$ make local_gc_content.csv
curl --location --output Sco.dna http://bit.ly/1Q8eKWT
python dna2csv.py

That’s cool, make uses the information about requirements to build any missing pieces.

Let’s add another rule for generating the local_gc_content.png file from the local_gc_content.csv file.
Add the lines below to the top of the Makefile.

104 Chapter 11. Automation is your friend



The Biologist’s Guide to Computing, Release 0.9.1

local_gc_content.png: local_gc_content.csv
Rscript csv2png.R

Let’s also remember to update the rule for cleaning up.

clean:
rm Sco.dna
rm local_gc_content.csv
rm local_gc_content.png

Finally, let’s add a rule for building the manuscript as a PDF file and update the clean rule to remove it.

manuscript.pdf: local_gc_content.png
pandoc -f markdown -t latex -s manuscript.md -o manuscript.pdf \
--filter pandoc-citeproc

local_gc_content.png: local_gc_content.csv
Rscript csv2png.R

local_gc_content.csv: Sco.dna
python dna2csv.py

Sco.dna:
curl --location --output Sco.dna http://bit.ly/1Q8eKWT

clean:
rm Sco.dna
rm local_gc_content.csv
rm local_gc_content.png
rm manuscript.pdf

Let’s try it.

$ make clean
rm Sco.dna
rm local_gc_content.csv
rm local_gc_content.png
rm manuscript.pdf

Double check that the files have actually been removed.

$ ls
Makefile csv2png.R nature.csl
README.md dna2csv.py references.bib
bioinformatics.csl manuscript.md

Now let’s build the manuscript.pdf file from scratch.

$ make
curl --location --output Sco.dna http://bit.ly/1Q8eKWT
python dna2csv.py
Rscript csv2png.R
pandoc -f markdown -t latex -s manuscript.md -o manuscript.pdf \

--filter pandoc-citeproc

Very cool!

Now suppose that for some reason we needed to use a different genome file. In this case we would only
need to update the URL used in the Makefile’s Sco.dna rule and run make again! Amazing!

This is a good point to commit a snapshot of the Git repository. First of all let’s clean up.

11.2. Creating a Makefile 105



The Biologist’s Guide to Computing, Release 0.9.1

$ make clean
rm Sco.dna
rm local_gc_content.csv
rm local_gc_content.png
rm manuscript.pdf

Now let’s check the status of the project.

$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
Untracked files:

(use "git add <file>..." to include in what will be committed)

Makefile

nothing added to commit but untracked files present (use "git add" to track)

Great let’s add and commit the Makefile.

$ git add Makefile
$ git commit -m "Added Makefile to build manuscript.pdf"
[master 5d74b6a] Added Makefile to build manuscript.pdf
1 file changed, 18 insertions(+)
create mode 100644 Makefile

Finally, we push the changes to GitHub.

$ git push
Counting objects: 3, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 498 bytes | 0 bytes/s, done.
Total 3 (delta 1), reused 0 (delta 0)
To https://github.com/tjelvar-olsson/S.coelicolor-local-GC-content.git

bea89f4..5d74b6a master -> master

This was quite a short chapter which illustrates that automation does not need to be painful!

Note that as well as automating the building of the manuscript the rules in the Makefile serve as authoritative
documentation that can be used to understand how the different components of the project fit together.

11.3 Key concepts
• Automation is your friend

• The make command builds projects using rules specified in the Makefile

• By specifying requirements for each target in the Makefile the make command can work out what the
dependency graph is

• It is good practice to specify a clean rule for removing files that are built automatically

• Automation saves you time in the long run

• Good automation scripts also serve a purpose as technical documentation of a project

106 Chapter 11. Automation is your friend



CHAPTER12

Practical problem solving

So far we have been learning about computing and coding.

The purpose of this chapter is to introduce some practical techniques for tackling data analysis problems.

At this point we go back to looking at the Swiss-Prot FASTA file used in First steps towards automation
(page 13). You can download this file using the curl command below.

$ curl --location --output uniprot_sprot.fasta.gz http://bit.ly/1l6SAKb

The downloaded uniprot_sprot.fasta.gz file is gzipped. You can view the content of this file without
permanently unzipping it using the command below.

$ gunzip -c uniprot_sprot.fasta.gz

If the curl and gunzip commands above look unfamiliar you may want to review the First steps towards
automation (page 13) chapter.

By briefly inspecting some random FASTA description lines it becomes clear that some species include vari-
ants. Below are some sample E. coli extracts from the FASTA file.

...IraP OS=Escherichia coli (strain SE11) GN=iraP PE=3 SV=1

...IraP OS=Escherichia coli (strain SMS-3-5 / SECEC) GN=iraP PE=3 SV=1

...IraP OS=Escherichia coli (strain UTI89 / UPEC) GN=iraP PE=3 SV=1

How many variants are there per species? Do all variants contain the same number of proteins?

To answer these questions we will make use of the Python scripting language and some practical problem
solving techniques.

12.1 Stop and think
One of the most common mistakes when programming is to start coding before the problem is clearly defined.

What do we want to achieve? Pause for a second and try to answer this question to yourself. It may help
trying to explain it out loud.

107



The Biologist’s Guide to Computing, Release 0.9.1

Rubber duck debugging

When faced with a tricky bug many programmers find that one of the best methods to debug their code
is to explain it to a colleague. The act of verbalising ones assumptions often identifies the problem
at hand without the colleague having to do anything except listen. This technique is so powerful that
some programmers use a rubber duck, as a substitute for a colleague, when the latter is unavailable.
This method is not limited to debugging, hence the suggestion to verbalise the problem statement out
loud.

Now describe all the steps required to achieve this goal. Again it may help speaking out loud to yourself or
imagining that you are describing the required steps to a colleague.

Did you find that easy or difficult? Thinking about what one wants to achieve and all the steps required to
get there can often be quite overwhelming. When this happens it is easy to think to oneself that the detail
will become clear later on and that one should stop wasting time and get on with the coding. Try to avoid
doing this. Rather, try to think of a simpler goal.

For example consider the goal of working out how many different species there are in the FASTA file. This
goal would require us to:

1. Identify all the description lines in the FASTA file

2. Extract the organism name from the line

3. Ensure that there are no duplicate entries

4. Count the number of entries

If you know the tools and techniques required to do all of the steps above this may not seem overwhelming.
However, if you don’t it will. In either case it is worthwhile to treat each step as a goal in itself and work out
the sub-steps required to achieve these. By iterating over this process you will either get down to steps sizes
that do not feel overwhelming or you will identify the key aspect that you feel unsure about.

For example, the first step to identify all the description lines in the FASTA file can be decomposed into the
sub-steps below.

1. Create a list for storing the description lines

2. Iterate over all the lines in the input file

3. For each line check if it is a description line

4. If it is add the line to the list

Now suppose one felt unsure about how to check if a line was a description line. This would represent a
good place to start experimenting with some actual code. Can we come up with a code snippet that can
check if a string is a FASTA description line?

12.2 Measuring success
Up until this point we have been testing our code snippets by running the code and verifying the results
manually. This is terribly inefficient and soon breaks down once you have more than one thing to test.

It is much better to write tests that can be run automatically. Let’s examine this concept. Create a file named
fasta_utils.py and add the Python code below to it.

1 """Module containing utility functions for working with FASTA files."""
2

3 def test_is_description_line():
4 """Test the is_description_line() function."""

108 Chapter 12. Practical problem solving



The Biologist’s Guide to Computing, Release 0.9.1

5 print("Testing the is_description_line() function...")
6

7 test_is_description_line()

The first line is a module level “docstring” and it is used to explain the intent of the module as a whole.
A “module” is basically a file with a .py extension, i.e. a Python file. Modules are used to group related
functionality together.

Lines three to five represent a function named test_is_description_line(). Python functions consist of
two parts: the function definition (line 3) and the function body (lines 4 and 5).

In Python functions are defined using the def keyword. Note that the def keyword is followed by the name
of the function. The name of the function is followed by a parenthesized set of arguments, in this case the
function takes no arguments. The end of the function definition is marked using a colon.

The body of the function, lines four and five, need to be indented. The standard in Python is to use four
white spaces to indent code blocks.

Warning: Whitespace really matters in Python! If your code is not correctly aligned you will see
IndentationError messages telling you that everything is not as it should be. You will also run into
IndentationError messages if you mix white spaces and tabs.

The first line of the function body, line four, is a docstring explaining the intent of the function. Line five
makes use of the built-in print() function to write a string to the standard output stream. Python’s built-in
print() function is similar to the echo command we used earlier in Keeping track of your work (page 31).

Finally, on line seven the test_is_description_line() function is called, i.e. the logic within the function’s
body is executed. In this instance this means that the "Testing the is_description_line() function..."
string is written to the standard output stream.

Let us run this script in a terminal. To run a Python script we use the python command followed by the name
of the script.

$ python fasta_utils.py
Testing the is_description_line() function...

So far so good? At the moment our test_is_description_line() function does not actually test anything.
Let us rectify that now.

1 """Module containing utility functions for working with FASTA files."""
2

3 def test_is_description_line():
4 """Test the is_description_line() function."""
5 print("Testing the is_description_line() function...")
6 assert is_description_line(">This is a description line") is True
7

8 test_is_description_line()

There are quite a few things going on in the newly added line. First of all it makes use of three built-in
features of Python: the assert and is keywords, as well as the True constant. Let’s work through these in
reverse order.

Python has some built-in constants61, most notably True, False and None. The True and False constants are
the only instances of the bool (boolean) type and None is often used to represent the absence of a value.

In Python is is an operator that checks for object identity, i.e. if the object returned by the
is_description_line() function and True are the same object. If they are the same object the compari-
son evaluates to True if not it evaluates to False.

61 https://docs.python.org/2/library/constants.html

12.2. Measuring success 109

https://docs.python.org/2/library/constants.html


The Biologist’s Guide to Computing, Release 0.9.1

The assert keyword is used to insert debugging statements into a program. It provides a means to ensure
that the state of a program is as expected. If the statement evaluates to False an AssertionError is raised.

So, what will happen if we run the code in its current form? Well, we have not yet defined the
is_description_line() function, so Python will raise a NameError. Let us run the code.

$ python fasta_utils.py
Testing the is_description_line() function...
Traceback (most recent call last):

File "fasta_utils.py", line 8, in <module>
test_is_description_line()

File "fasta_utils.py", line 6, in test_is_description_line
assert is_description_line(">This is a description line") is True

NameError: global name 'is_description_line' is not defined

Great now we are getting somewhere! What? Well, we have impemented some code to test the functionality
of the is_description_line() and it tells us that the function does not exist. This is useful information. Let
us add a placeholder is_description_line() function to the Python module.

1 """Module containing utility functions for working with FASTA files."""
2

3 def is_description_line(line):
4 """Return True if the line is a FASTA description line."""
5

6 def test_is_description_line():
7 """Test the is_description_line() function."""
8 print("Testing the is_description_line() function...")
9 assert is_description_line(">This is a description line") is True

10

11 test_is_description_line()

Note that the function we have added on lines three and four currently does nothing. By default the function
will return None. However, when we run the script we should no longer get a NameError. Let’s find out what
happens when we run the code.

$ python fasta_utils.py
Testing the is_description_line() function...
Traceback (most recent call last):

File "fasta_utils.py", line 11, in <module>
test_is_description_line()

File "fasta_utils.py", line 9, in test_is_description_line
assert is_description_line(">This is a description line") is True

AssertionError

More progress! Now we see the expected AssertionError, becuase None is not True. Let us add some code
to try to get rid of this error message. To achieve this we simply need to make the function return True.

1 """Module containing utility functions for working with FASTA files."""
2

3 def is_description_line(line):
4 """Return True if the line is a FASTA description line."""
5 return True
6

7 def test_is_description_line():
8 """Test the is_description_line() function."""
9 print("Testing the is_description_line() function...")

10 assert is_description_line(">This is a description line") is True
11

12 test_is_description_line()

110 Chapter 12. Practical problem solving



The Biologist’s Guide to Computing, Release 0.9.1

Now, we can run the code again.

$ python fasta_utils.py
Testing the is_description_line() function...

No error message, the code is now working to the specification described in the test. However, the test does
not specify what the behaviour should be for a biological sequence line. Let us add another assert statement
to specify this.

1 """Module containing utility functions for working with FASTA files."""
2

3 def is_description_line(line):
4 """Return True if the line is a FASTA description line."""
5 return True
6

7 def test_is_description_line():
8 """Test the is_description_line() function."""
9 print("Testing the is_description_line() function...")

10 assert is_description_line(">This is a description line") is True
11 assert is_description_line("ATCG") is False
12

13 test_is_description_line()

Now we can run the code again.

$ python fasta_utils.py
Testing the is_description_line() function...
Traceback (most recent call last):

File "fasta_utils.py", line 13, in <module>
test_is_description_line()

File "fasta_utils.py", line 11, in test_is_description_line
assert is_description_line("ATCG") is False

AssertionError

More progress, we now have a test to ensure that the is_description_line() function returns False when
the input line is a sequence. Let us try to implement the desired functionality to make the test pass. For this
we will use the startswith()62 method, that is built into strings, to check if the string starts with a greater
than (>) character.

1 """Module containing utility functions for working with FASTA files."""
2

3 def is_description_line(line):
4 """Return True if the line is a FASTA description line."""
5 if line.startswith(">"):
6 return True
7 else:
8 return False
9

10 def test_is_description_line():
11 """Test the is_description_line() function."""
12 print("Testing the is_description_line() function...")
13 assert is_description_line(">This is a description line") is True
14 assert is_description_line("ATCG") is False
15

16 test_is_description_line()

In the code above we make use of conditional logic, i.e. if something is True the code does something
otherwise it does something else. As mentioned previously whitespace is important in Python and four

62 https://docs.python.org/2/library/stdtypes.html#str.startswith

12.2. Measuring success 111

https://docs.python.org/2/library/stdtypes.html#str.startswith


The Biologist’s Guide to Computing, Release 0.9.1

spaces are used to indent the lines after the if and else statements to tell Python which statement(s) belong
in the conditional code blocks. In this case we only have one statement per conditional, but it is possible to
group several statements together based on their indentation.

Let us test the code again.

$ python fasta_utils.py
Testing the is_description_line() function...

Fantastic the code behaves in the way that we want it to behave!

However, the current implementation of the is_description_line() function is a little bit verbose. Do we
really need the else conditional? What would happen if it was not there?

The beauty of tests now become more apparent. We can start experimenting with the implementation of a
function and feel confident that we are not breaking it. As long as the tests do not fail that is!

Let us test out our hypothesis that the else conditional is redundant by removing it and de-denting the
return False statement.

1 """Module containing utility functions for working with FASTA files."""
2

3 def is_description_line(line):
4 """Return True if the line is a FASTA description line."""
5 if line.startswith(">"):
6 return True
7 return False

Now we can simply run the tests to see what happens.

$ python fasta_utils.py
Testing the is_description_line() function...

Amazing, we just made a change to our code and we can feel pretty sure that it is still working as intended.
This is very powerful. Incidentally, the code works by virtue of the fact that if the return True statement is
reached the function returns True and exits, as such the second return statement is not called.

The methodology used in this section is known as Test-Driven Development, often referred to as TDD. It
involves three steps:

1. Write a test

2. Write minimal code to make the test pass

3. Refactor the code if necessary

In this instance we started off by writing a test checking that the is_description_line() function returned
True when the input was a description line. We then added minimal code to make the test pass, i.e. we
simply made the function return True. At this point no refactoring was needed so we added another test to
check that the function returned False when the input was a sequence line. We then added some naive code
to make the tests pass. At this point, we believed that there was scope to improve the implementation of the
function, so we refactored it to remove the redundant else statement.

Well done! That was a lot of information. Go make yourself a cup of tea.

12.3 More string processing
Because information about DNA and proteins are often stored in plain text files many aspects of biological
data processing involves manipulating text. In computing text is often referred to as strings of characters.

112 Chapter 12. Practical problem solving



The Biologist’s Guide to Computing, Release 0.9.1

String manipulation is is therefore a common task both for processing biological sequences and for interpret-
ing sequence identifiers.

This section will provide a brief summary of how Python can be used for such string processing.

Start Python in its interactive mode by typing python into the terminal.

$ python
Python 2.7.10 (default, Jul 14 2015, 19:46:27)
[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.39)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

12.3.1 The Python string object
When parsing in strings from a text file one often has to deal with lines that have leading and/or trailing
white spaces. Commonly one wants to get rid of them. This can be achieved using the strip() method built
into the string object.

>>> " text with leading/trailing spaces ".strip()
'text with leading/trailing spaces'

Another common use case is to replace a word in a line. For example, when we strip out the leading and
trailing white spaces one might want to update the word “with” to “without” to make the resulting string
reflect its current state. This can be achieved using the replace() method.

>>> " text with leading/trailing spaces ".strip().replace("with", "without")
'text without leading/trailing spaces'

Note: In the example above we chain the strip() and replace() methods together. In practise this means
that the replace() methods acts on the return value of the strip() method.

What is the difference between a function and a method?

Often the two terms are used interchangeably. However, a method refers to a function that is part of a
class and the term function refers to a function which stands on its own.

Earlier we saw how the startswith() method can be used to identify FASTA description lines.

>>> ">MySeq1|description line".startswith(">")
True

The endswith() method complements the startswith() method and is often used to examine file extensions.

>>> "/home/olsson/images/profile.png".endswith("png")
True

This example above only works if the file extension is in lower case.

>>> "/home/olsson/images/profile.PNG".endswith("png")
False

However, we can overcome this issue by adding a call to the lower() method, which converts the string to
lower case.

12.3. More string processing 113



The Biologist’s Guide to Computing, Release 0.9.1

>>> "/home/olsson/images/profile.PNG".lower().endswith("png")
True

Another common use case is to search for a particular string within another string. For example one might
want to find out if the UniProt identifier “Q6GZX4” is present in a FASTA description line. To achieve this
one can use the find() method, which returns the index position (zero-based) where the search term was
first identified.

>>> ">sp|Q6GZX4|001R_FRG3G".find("Q6GZX4")
4

If the search term is not identified find() returns -1.

>>> ">sp|P31946|1433B_HUMAN".find("Q6GZX4")
-1

When iterating over lines in a file one often wants to split the line based on a delimiter. This can be achieved
using the split() method. By default this splits on white space characters and returns a list of strings.

>>> "text without leading/trailing spaces".split()
['text', 'without', 'leading/trailing', 'spaces']

A different delimiter can be used by providing it as an argument to the split() method.

>>> ">sp|Q6GZX4|001R_FRG3G".split("|")
['>sp', 'Q6GZX4', '001R_FRG3G']

There are many variations on the string operators described above. It is useful to familiarise yourself with
the Python documentation on strings63.

12.3.2 Regular expressions
Regular expressions can be defined as a series of characters that define a search pattern.

Regular expressions can be very powerful. However, they can be difficult to build up. Often it is a process of
trial and error. This means that once they have been created, and the trial and error process has been forgot-
ten, it can be extremely difficult to understand what the regular expression does and why it is constructed
the way it is.

Warning: Use regular expression as a last resort. A good rule of thumb is to always try to use string
operations to implement the desired functionality and only switch to regular expressions when the code
implemented using these operations becomes more difficult to understand than the equivalent regular
expression.

To use regular expressions in Python we need to import the re module. The re module is part of Python’s
standard library. Importing modules in Python is achieved using the import keyword.

What is a standard library?

In computing a standard library refers to a set of functionality that comes built-in with the core pro-
gramming language.

>>> import re

63 https://docs.python.org/2/library/string.html

114 Chapter 12. Practical problem solving

https://docs.python.org/2/library/string.html


The Biologist’s Guide to Computing, Release 0.9.1

Let us store a FASTA description line in a variable.

>>> fasta_desc = ">sp|Q6GZX4|001R_FRG3G"

Now, let us search for the UniProt identifer Q6GZX4 within the line.

>>> re.search(r"Q6GZX4", fasta_desc)
<_sre.SRE_Match object at 0x...>

There are two things to note here:

1. We use a raw string to represent our regular expression, i.e. the string prefixed with an r

2. The regular expression search() method returns a match object (or None if no match is found)

What is a “raw string”?

In Python “raw” strings differ from regular strings in that the bashslash \ character is interpreted
literally. For example the regular string equivalent of r"\n" would be "\\n" where the first backslash is
used to escape the effect of the second (remember that \n represents a newline).
Raw strings were introduced in Python to make it easier to create regular expressions that rely heavily
on the use of literal backslashes.

The index of the first matched character can be accessed using the match object’s start() method. The
match object also has an end() method that returns the index of the last character + 1.

>>> match = re.search(r"Q6GZX4", fasta_desc)
>>> if match:
... print(fasta_desc[match.start():match.end()])
...
Q6GZX4

In the above we make use of the fact that Python strings support slicing. Slicing is a means to access a
subsection of a sequence. The [start:end] syntax is inclusive for the start index and exclusive for the end
index.

>>> "012345"[2:4]
'23'

To see the merit of regular expressions we need to create one that matches more than one thing. For example
a regular expression that could match all the patterns id0, id1, ..., id9.

Now suppose that we had a list containing FASTA description lines with these types of identifiers.

>>> fasta_desc_list = [">id0 match this",
... ">id9 and this",
... ">id100 but not this (initially)",
... "AATCG"]
...

Note that the list above also contains a sequence line that we never want to match.

Let us loop over the items in this list and print out the lines that match our identifier regular expression.

>>> for line in fasta_desc_list:
... if re.search(r">id[0-9]\s", line):
... print(line)
...
>id0 match this
>id9 and this

12.3. More string processing 115



The Biologist’s Guide to Computing, Release 0.9.1

There are two noteworthy aspects of the regular expression. Firstly, the [0-9] syntax means match any digit.
Secondly, the \s regular expression meta character means match any white space character.

The [0-9] syntax works in Bash too!

For example to list the files photo_0.png, photo_1.png, ..., photo_9.png you could use the command.

$ ls photo_[0-9].png

If one wanted to create a regular expression to match an identifier with an arbitrary number of digits one can
make use of the * meta character, which causes the regular expression to match the preceding expression 0
or more times.

>>> for line in fasta_desc_list:
... if re.search(r">id[0-9]*\s", line):
... print(line)
...
>id0 match this
>id9 and this
>id100 but not this (initially)

It is possible to extract specific pieces of information from a line using regular expressions. This uses a
concept known as “groups”, which are indicated using parenthesis. Let us try to extract the UniProt identifier
from a FASTA description line.

>>> print(fasta_desc)
>sp|Q6GZX4|001R_FRG3G
>>> match = re.search(r">sp\|([A-Z,0-9]*)\|", fasta_desc)

Warning: Note how horrible and incomprehensible the regular expression is.

It took me a couple of attempts to get this regular expression right as I forgot that | is a regular expression
meta character that needs to be escaped using a backslash \.

The regular expression representing the UniProt idendifier [A-Z,0-9]* means match capital letters (A-Z)
and digits (0-9) zero or more times (*). The UniProt regular expression is enclosed in parenthesis. The
parenthesis denote that the UniProt identifier is a group that we would like access to. In other words, the
purpose of a group is to give the user access to a section of interest within the regular expression.

>>> match.groups()
('Q6GZX4',)
>>> match.group(0) # Everything matched by the regular expression.
'>sp|Q6GZX4|'
>>> match.group(1)
'Q6GZX4'

Note: There is a difference between the groups() and the group() methods. The former returns a tuple
containing all the groups defined in the regular expression. The latter takes an integer as input and returns
a specific group. However, confusingly group(0) returns everything matched by the regular expression and
group(1) returns the first group making the group() method appear as if it used a one-based indexing
scheme.

Finally Let us have a look at a common pitfall when using regular expressions in Python: the difference
between the methods search() and match().

116 Chapter 12. Practical problem solving



The Biologist’s Guide to Computing, Release 0.9.1

>>> print(re.search(r"cat", "my cat has a hat"))
<_sre.SRE_Match object at 0x...>
>>> print(re.match(r"cat", "my cat has a hat"))
None

Basically match() only looks for a match at the beginning of the string to be searched. For more information
see the search() vs match()64 section in the Python documentation.

There is a lot more to regular expressions in particular all the meta characters. For more information have a
look at the regular expressions operations65 section in the Python documentation.

12.4 Extracting the organism name
Armed with our new found knowledge of string processing let’s create a function for extracting the organism
name from a SwissProt FASTA description line. In other words given the lines:

>sp|P01090|2SS2_BRANA Napin-2 OS=Brassica napus PE=2 SV=2
>sp|Q15942|ZYX_HUMAN Zyxin OS=Homo sapiens GN=ZYX PE=1 SV=1
>sp|Q6QGT3|A1_BPT5 A1 protein OS=Escherichia phage T5 GN=A1 PE=2 SV=1

We would like to extract the strings:

Brassica napus
Homo sapiens
Escherichia phage T5

There are three things which are worth noting:

1. The organism name string is always preceeded by the key OS (Organism Name)

2. The organism name string can contain more than two words

3. The two letter key after the organism name string can vary, in the case above we see both PS (Protein
Existence) and GE (Gene Name)

For more information about the UniProt FASTA description line go to UniProt’s FASTA header66 page.

The three FASTA description lines examined above provide an excellent basis for creating a test for the
function that we want. Add the lines below to your fasta_utils.py file.

15 def test_extract_organism_name():
16 """Test the extract_organism_name() function."""
17 print("Testing the extract_organism_name() function...")
18 lines = [">sp|P01090|2SS2_BRANA Napin-2 OS=Brassica napus PE=2 SV=2",
19 ">sp|Q15942|ZYX_HUMAN Zyxin OS=Homo sapiens GN=ZYX PE=1 SV=1",
20 ">sp|Q6QGT3|A1_BPT5 A1 protein OS=Escherichia phage T5 GN=A1 PE=2 SV=1"]
21 organism_names = ["Brassica napus", "Homo sapiens", "Escherichia phage T5"]
22 for line, organism_name in zip(lines, organism_names):
23 assert extract_organism_name(line) == organism_name
24

25 test_is_description_line()

In the above we make use of pythons built-in zip() function. This function takes two lists as inputs and
returns a list with paired values from the input lists.

64 https://docs.python.org/2/library/re.html#search-vs-match
65 https://docs.python.org/2/library/re.html
66 http://www.uniprot.org/help/fasta-headers

12.4. Extracting the organism name 117

https://docs.python.org/2/library/re.html#search-vs-match
https://docs.python.org/2/library/re.html
http://www.uniprot.org/help/fasta-headers


The Biologist’s Guide to Computing, Release 0.9.1

>>> zip(["a", "b", "c"], [1, 2, 3])
[('a', 1), ('b', 2), ('c', 3)]

Let’s make sure that the tests fail.

$ python fasta_utils.py
Testing the is_description_line() function...

What, no error message, what is going on? Ah, we added the test, but forgot to add a line to call it. Let’s
rectify that.

25 test_is_description_line()
26 test_extract_organism_name()

Let’s try again.

$ python fasta_utils.py
Testing the is_description_line() function...
Testing the extract_organism_name() function...
Traceback (most recent call last):

File "fasta_utils.py", line 26, in <module>
test_extract_organism_name()

File "fasta_utils.py", line 23, in test_extract_organism_name
assert extract_organism_name(line) == organism_name

NameError: global name 'extract_organism_name' is not defined

Success! We now have a failing test informing us that we need to create the extract_organism_name()
function. Let’s do that.

15 def extract_organism_name(line):
16 """Return the organism name from a FASTA description line."""

Let’s find out where this minimal implementation gets us.

$ python fasta_utils.py
Testing the is_description_line() function...
Testing the extract_organism_name() function...
Traceback (most recent call last):

File "fasta_utils.py", line 29, in <module>
test_extract_organism_name()

File "fasta_utils.py", line 26, in test_extract_organism_name
assert extract_organism_name(line) == organism_name

AssertionError

The test fails as expected. However, since we are looping over many input lines it would be good to get
an idea of which test failed. We can achieve this by making use of the fact that we can provide a custom
message to be passed to the AssertionError. Let us pass it the input line. Note the addition of the trailing ,
line in line 26.

25 for line, organism_name in zip(lines, organism_names):
26 assert extract_organism_name(line) == organism_name, line

Let’s see what we get now.

$ python fasta_utils.py
Testing the is_description_line() function...
Testing the extract_organism_name() function...
Traceback (most recent call last):

File "fasta_utils.py", line 29, in <module>
test_extract_organism_name()

118 Chapter 12. Practical problem solving



The Biologist’s Guide to Computing, Release 0.9.1

File "fasta_utils.py", line 26, in test_extract_organism_name
assert extract_organism_name(line) == organism_name, line

AssertionError: >sp|P01090|2SS2_BRANA Napin-2 OS=Brassica napus PE=2 SV=2

Much better! Let us try to implement a basic regular expression to make this pass. First of all we need to
make sure we import the re module.

1 """Module containing utility functions for working with FASTA files."""
2

3 import re

Then we can implement a regular expression to try to extract the organism name.

17 def extract_organism_name(line):
18 """Return the organism name from a FASTA description line."""
19 match = re.search(r"OS=(.*) PE=", line)
20 return match.group(1)

Remember the .* means match any character zero or more times and the surrounding parenthesis creates a
group.

Let us see what happens now.

$ python fasta_utils.py
Testing the is_description_line() function...
Testing the extract_organism_name() function...
Traceback (most recent call last):

File "fasta_utils.py", line 34, in <module>
test_extract_organism_name()

File "fasta_utils.py", line 31, in test_extract_organism_name
assert extract_organism_name(line) == organism_name, line

AssertionError: >sp|Q15942|ZYX_HUMAN Zyxin OS=Homo sapiens GN=ZYX PE=1 SV=1

Progress! We are now seeing a different error message. The issue is that the key after the regular expression
is GN rather than PE. Let us try to rectify that.

17 def extract_organism_name(line):
18 """Return the organsim name from a FASTA description line."""
19 match = re.search(r"OS=(.*) [A-Z]{2}=", line)
20 return match.group(1)

The regular expression now states that instead of PE it wants any capital letter [A-Z] repeated twice {2}.
Let’s find out if this fixes the issue.

$ python fasta_utils.py
Testing the is_description_line() function...
Testing the extract_organism_name() function...
Traceback (most recent call last):

File "fasta_utils.py", line 33, in <module>
test_extract_organism_name()

File "fasta_utils.py", line 30, in test_extract_organism_name
assert extract_organism_name(line) == organism_name, line

AssertionError: >sp|P01090|2SS2_BRANA Napin-2 OS=Brassica napus PE=2 SV=2

What, back at square one again? As mentioned previously, regular expressions can be painful and should
only be used as a last resort. This also exemplifies why it is important to have tests. Sometimes you think
you make an innocuous change, but instead things just fall apart.

At this stage the error message is not very useful, let us change it to print out the value returned by the
function instead.

12.4. Extracting the organism name 119



The Biologist’s Guide to Computing, Release 0.9.1

29 for line, organism_name in zip(lines, organism_names):
30 assert extract_organism_name(line) == organism_name, extract_organism_name(line)

Now, let’s see what is going on.

$ python fasta_utils.py
Testing the is_description_line() function...
Testing the extract_organism_name() function...
Traceback (most recent call last):

File "fasta_utils.py", line 33, in <module>
test_extract_organism_name()

File "fasta_utils.py", line 30, in test_extract_organism_name
assert extract_organism_name(line) == organism_name, extract_organism_name(line)

AssertionError: Brassica napus PE=2

Our regular expression is basically matching too much. The reason for this is that the * meta character acts
in a “greedy” fashion matching as much as possible, see Fig. 12.1. In this case the PE=2 is included in the
match group as [A-Z]{2} is matched by the SV= key at the end of the line. The fix is to make the * meta
character act in a “non-greedy” fashion. This is achieved by adding a ? suffix to it.

17 def extract_organism_name(line):
18 """Return the organism name from a FASTA description line."""
19 match = re.search(r"OS=(.*?) [A-Z]{2}=", line)
20 return match.group(1)

Let’s find out what happens now.

$ python fasta_utils.py
Testing the is_description_line() function...
Testing the extract_organism_name() function...

All the tests pass! Well done, time for another cup of tea.

Fig. 12.1: Figure illustrating the difference between a greedy and a non-greedy regular expression. The *
meta-character causes the previous regular expression, in this case the any character (.), to be matched zero
or more times. This is done in a greedy fashion, i.e. trying to match as much text as possible. To make that
part of the regular expression match as little text as possible, i.e. to work in a non-greedy fashion, we use
the meta-character *?.

120 Chapter 12. Practical problem solving



The Biologist’s Guide to Computing, Release 0.9.1

12.5 Only running tests when themodule is called directly
In Python, modules provide a means to group related functionality together. For example we have already
looked at and made use of the re module, which groups functionality for working with regular expressions.

In Python any file with a .py extension is a module. This means that the file that we have been creating,
fasta_utils.py, is a module.

To make use of the functionality within a module one needs to import it. Let’s try this out in an interactive
session

$ python

Now we can import the module.

>>> import fasta_utils
Testing the is_description_line() function...
Testing the extract_organism_name() function...

Note that the tests run just like when we call the fasta_utils.py script directly. This is an undesired side
effect of the current implementation. It would be better if the tests were not run when the module is
imported.

To improve the behaviour of the fasta_utils module we will make use of a special Python attribute called
__name__, which provides a string representation of scope. When commands are run from a script or the
interactive prompt the name attribute is set to __main__. When a module is imported the __name__ attribute
is set to the name of the module.

>>> print(__name__)
__main__
>>> print(fasta_utils.__name__)
fasta_utils

Using this information we can update the fasta_utils.py file with the changes highlighted below.

32 if __name__ == "__main__":
33 test_is_description_line()
34 test_extract_organism_name()

Let us make sure that the tests still run if we run the script directly.

$ python fasta_utils.py
Testing the is_description_line() function...
Testing the extract_organism_name() function...

Now we can reload the module in the interactive prompt we were working in earlier to make sure that the
tests no longer get executed.

>>> reload(fasta_utils)
<module 'fasta_utils' from 'fasta_utils.py'>

The test suite is no longer being called upon loading the module and no lines logging the progress of the
testing suite is being printed to the terminal.

Note that simply calling the import fasta_utils command again will not actually detect the changes that
we made to the fasta_utils.py file, which is why we make use of Python’s built-in reload() function.
Alternatively, one could have exited the Python shell, using Ctrl-D or the exit() function, and then started a
new interactive Python session and imported the fasta_utils module again.

12.5. Only running tests when themodule is called directly 121



The Biologist’s Guide to Computing, Release 0.9.1

12.6 Counting the number of unique organisms
We can now use the fasta_utils module to start answering some of the biological questions that we posed
at the beginning of this chapter. For now let us do this using an interactive Python shell.

$ python
Python 2.7.10 (default, Jul 14 2015, 19:46:27)
[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.39)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

Now we will start by importing the modules that we want to use. In this case fasta_utils for processing the
data and gzip for opening and reading in the data from the uniprot_sprot.2015-11-26.fasta.gz file.

>>> import fasta_utils
>>> import gzip

Now we create a list for storing all the FASTA description lines.

>>> fasta_desc_lines = []

We can then open the file using the gzip.open() function. Note that this returns a file handle.

>>> file_handle = gzip.open("../data/uniprot_sprot.2015-11-26.fasta.gz")

Using a for loop we can iterate over all the lines in the input file.

>>> for line in file_handle:
... if fasta_utils.is_description_line(line):
... fasta_desc_lines.append(line)
...

When we are finished with the input file we must remember to close it.

>>> file_handle.close()

Let’s check that the number of FASTA description lines using the built-in len() function. This function returns
the number of items in the list, i.e. the length of the list.

>>> len(fasta_desc_lines)
549832

Okay now it is time to find the number of unique organisms. For this we will make use of a data structure
called set. In Python sets are used to compare collections of unique elements. This means that sets are
ideally suited for operations that you may associate with Venn diagrams.

However, in this instance we simply use the set data structure to ensure that we only get one unique
representative of each organism. In other words even if one calls the set.add() function several times with
the same item the item will only occur once in the set.

>>> organisms = set()
>>> for line in fasta_desc_lines:
... s = fasta_utils.extract_organism_name(line)
... organisms.add(s)
...
>>> len(organisms)
13251

Great, now we know that there are 13,251 unique organisms represented in the FASTA file.

122 Chapter 12. Practical problem solving



The Biologist’s Guide to Computing, Release 0.9.1

12.7 Finding the number of variants per species and the number of pro-
teins per variant

Suppose we had a FASTA file containing only four entries with the description lines below.

>sp|P12334|AZUR1_METJ Azurin iso-1 OS=Methylomonas sp. (strain J) PE=1 SV=2
>sp|P12335|AZUR2_METJ Azurin iso-2 OS=Methylomonas sp. (strain J) PE=1 SV=1
>sp|P23827|ECOT_ECOLI Ecotin OS=Escherichia coli (strain K12) GN=eco PE=1 SV=1
>sp|B6I1A7|ECOT_ECOSE Ecotin OS=Escherichia coli (strain SE11) GN=eco PE=3 SV=1

The analysis in the previous section would have identified these as three separate entities.

Methylomonas sp. (strain J)
Escherichia coli (strain K12)
Escherichia coli (strain SE11)

Now, suppose that we wanted to find out how many variants there were of each species. In the example above
there would be be one variant of Methylomonas sp. and two variants of Escherichia coli. Furthermore,
suppose that we also wanted to find out how many proteins were associated with each variant.

We could achieve this by creating a nested data structure using Python’s built in dictionary type. At the top
level we should have a dictionary whose keys were the species, e.g. Escherichia coli. The values in the
top level dictionary should themselves be dictionaries. The keys of the nested dictionaries should be the full
organism name, e.g. Escherichia coli (strain K12). The values in the nested dictionary should be an
integer representing the number of proteins found for that organism. Below is a YAML representation of the
data structure that should be created from the four entries above.

---
Methylomonas sp.:

Methylomonas sp. (strain J): 2
Escherichia coli:

Escherichia coli (strain K12): 1
Escherichia coli (strain SE11): 1

So what type of functionality would we need to achieve this? First of all we need a function that given an
organism name returns the associated species. In other words something that converts Escherichia coli
(strain K12) to Escherichia coli. Secondly, we need a function that given a list of organism names returns
the data structure described above.

Let us start by creating a test for converting the organism name into a species. Add the test below to
fasta_utils.py.

32 def test_organism_name2species():
33 print("Testing the organism_name2species() function...")
34 assert organism_name2species("Methylomonas sp. (strain J)") == "Methylomonas sp."
35 assert organism_name2species("Homo sapiens") == "Homo sapiens"
36

37 if __name__ == "__main__":
38 test_is_description_line()
39 test_extract_organism_name()
40 test_organism_name2species()

Let’s find out what error this gives us.

$ python fasta_utils.py
Testing the is_description_line() function...
Testing the extract_organism_name() function...
Testing the organism_name2species() function...

12.7. Finding the number of variants per species and the number of proteins per variant 123



The Biologist’s Guide to Computing, Release 0.9.1

Traceback (most recent call last):
File "fasta_utils.py", line 40, in <module>

test_organism_name2species()
File "fasta_utils.py", line 34, in test_organism_name2species

assert organism_name2species("Methylomonas sp. (strain J)") == "Methylomonas sp."
NameError: global name 'organism_name2species' is not defined

The error message is telling us that we need to define the organism_name2species() function. Add the lines
below to define it.

32 def organism_name2species(organism_name):
33 """Return the species from the FASTA organism name."""

Now we get a new error message when we run the tests.

$ python fasta_utils.py
Testing the is_description_line() function...
Testing the extract_organism_name() function...
Testing the organism_name2species() function...
Traceback (most recent call last):

File "fasta_utils.py", line 43, in <module>
test_organism_name2species()

File "fasta_utils.py", line 37, in test_organism_name2species
assert organism_name2species("Methylomonas sp. (strain J)") == "Methylomonas sp."

AssertionError

Great, let us add some logic to the function.

32 def organism_name2species(organism_name):
33 """Return the species from the FASTA organism name."""
34 words = organism_name.split()
35 return words[0] + " " + words[1]

Above, we split the organism name based on whitespace separators and return the first two words joined by
a space character.

Note: In Python, and many other scripting languages, strings can be concatenated using the + operator.

>>> "hello" + " " + "world"
'hello world'

Time to test the code again.

$ python fasta_utils.py
Testing the is_description_line() function...
Testing the extract_organism_name() function...
Testing the organism_name2species() function...

Great, the function is working! Let us define a new test for the function that will generate the nested data
structure we described earlier.

42 def test_summarise_species_protein_data():
43 print("Testing summarise_species_protein_data() function...")
44 fasta_desc_lines = [
45 ">sp|P12334|AZUR1_METJ Azurin iso-1 OS=Methylomonas sp. (strain J) PE=1 SV=2",
46 ">sp|P12335|AZUR2_METJ Azurin iso-2 OS=Methylomonas sp. (strain J) PE=1 SV=1",
47 ">sp|P23827|ECOT_ECOLI Ecotin OS=Escherichia coli (strain K12) GN=eco PE=1 SV=1",
48 ">sp|B6I1A7|ECOT_ECOSE Ecotin OS=Escherichia coli (strain SE11) GN=eco PE=3 SV=1"

124 Chapter 12. Practical problem solving



The Biologist’s Guide to Computing, Release 0.9.1

49 ]
50 summary = summarise_species_protein_data(fasta_desc_lines)
51

52 # The top level dictionary will contain two entries.
53 assert len(summary) == 2
54 assert "Methylomonas sp." in summary
55 assert "Escherichia coli" in summary
56

57 # The value of the Methylomonas sp. entry is a dictionary with one
58 # entry in it.
59 assert len(summary["Methylomonas sp."]) == 1
60 assert summary["Methylomonas sp."]["Methylomonas sp. (strain J)"] == 2
61

62 # The value of the Escherichia coli entry is a dictionary with two
63 # entries in it.
64 assert len(summary["Escherichia coli"]) == 2
65 assert summary["Escherichia coli"]["Escherichia coli (strain K12)"] == 1
66 assert summary["Escherichia coli"]["Escherichia coli (strain SE11)"] == 1
67

68 if __name__ == "__main__":
69 test_is_description_line()
70 test_extract_organism_name()
71 test_organism_name2species()
72 test_summarise_species_protein_data()

This should all be getting familiar now. Time to run the tests.

$ python fasta_utils.py
Testing the is_description_line() function...
Testing the extract_organism_name() function...
Testing the organism_name2species() function...
Testing summarise_species_protein_data() function...
Traceback (most recent call last):

File "fasta_utils.py", line 70, in <module>
test_summarise_species_protein_data()

File "fasta_utils.py", line 50, in test_summarise_species_protein_data
summary = summarise_species_protein_data(fasta_desc_lines)

NameError: global name 'summarise_species_protein_data' is not defined

Again we start by defining the function.

42 def summarise_species_protein_data(fasta_desc_lines):
43 """Return data structure summarising the organism and protein data."""

And then we run the tests again.

$ python fasta_utils.py
Testing the is_description_line() function...
Testing the extract_organism_name() function...
Testing the organism_name2species() function...
Testing summarise_species_protein_data() function...
Traceback (most recent call last):

File "fasta_utils.py", line 74, in <module>
test_summarise_species_protein_data()

File "fasta_utils.py", line 57, in test_summarise_species_protein_data
assert len(summary) == 2

TypeError: object of type 'NoneType' has no len()

Time to add an implementation.

12.7. Finding the number of variants per species and the number of proteins per variant 125



The Biologist’s Guide to Computing, Release 0.9.1

42 def summarise_species_protein_data(fasta_desc_lines):
43 """Return data structure summarising the organism and protein data."""
44 summary = dict()
45 for line in fasta_desc_lines:
46 variant_name = extract_organism_name(line)
47 species_name = organism_name2species(variant_name)
48 variant_dict = summary.get(species_name, dict())
49 variant_dict[variant_name] = variant_dict.get(variant_name, 0) + 1
50 summary[species_name] = variant_dict
51 return summary

In the above we make use of the dictionary’s built-in get() method, which returns the value associated with
the key provided as the first argument. If the key does not yet exist in the dictionary it returns the second
argument, the default value.

On line 48 we try to access a variant_dict dictionary from within the summary dictionary, we are in other
words working with a nested data structure. If there is no entry associated with the species_name the get()
method will return an empty dictionary (dict()).

On line 49 we keep count of the number of times a variant of a species, as defined by the full organism name,
has been observed. In this instance we use the get() method to get the number of times the variant has been
observed previously and then we add 1 to it. If the variant has never been observed previously it will not be
in the dictionary and the variant_dict.get(variant_name, 0) method call will return 0 (the default value
specified).

Line 50 updates the top level dictionary by adding the variant_dict dictionary to the summary dictionary.

Let’s see if it the implementation works as expected.

$ python fasta_utils.py
Testing the is_description_line() function...
Testing the extract_organism_name() function...
Testing the organism_name2species() function...
Testing summarise_species_protein_data() function...

Hurray!

Finally, let us write a separate script to convert an input FASTA file into a YAML summary file. Create the file
fasta2yaml_summary.py and add the code below to it.

#!/usr/bin/env python

import sys
import yaml

import fasta_utils

fasta_desc_lines = list()

with sys.stdin as fh:
for line in fh:

if fasta_utils.is_description_line(line):
fasta_desc_lines.append(line)

summary = fasta_utils.summarise_species_protein_data(fasta_desc_lines)
yaml_text = yaml.dump(summary, explicit_start=True, default_flow_style=False)

with sys.stdout as fh:
fh.write(yaml_text)

126 Chapter 12. Practical problem solving



The Biologist’s Guide to Computing, Release 0.9.1

In the code above we make use of the yaml module to convert our data structure to the YAML file format.
The PyYAML package is not part of the Python’s standard library, but it is easily installed using pip (for more
detailed instructions see Installing Python packages (page 142)).

$ sudo pip install pyyaml

The script also makes use of sys.stdin and sys.stdout to read from the standard input stream and write to
the standard output stream, respectively. This means that we can pipe in the content to our script and pipe
output from our script. For example to examine the YAML output using the less pager one could use the
command below.

$ gunzip -c data/uniprot_sprot.2015-11-26.fasta.gz | python fasta2yaml_summary.py | less

This immediately reveals that there are organisms in the SwissProt FASTA file that have few protein associ-
ated with them.

Note: Remember the benefits of using pipes was described in Creating a work flow using pipes (page 17).

---
AKT8 murine:

AKT8 murine leukemia virus: 1
AKV murine:

AKV murine leukemia virus: 3
Abelson murine:

Abelson murine leukemia virus: 3
Abies alba:

Abies alba: 1
Abies balsamea:

Abies balsamea: 3

Note: The formatting in the YAML file above was created for us by the call to the yaml.dump() method in
the fasta2yaml_summary.py script.

Great work!

12.8 Key concepts
• Think about the problem at hand before you start coding

• Break down large tasks into smaller more manageable tasks, repeat until the tasks seem trivial

• Test-driven development is a software development practise that can help break tasks into manageable
chunks that can be tested

• Many aspects of biological data processing boil down to string manipulations

• Regular expressions are a powerful tool for performing string manipulations, but use with caution as
they can result in confusion

• Python has many built-in packages for performing complex tasks, in this chapter we used the re pack-
age for working with regular expressions

• There are also many third party Python packages that can be installed, in this chapter we made use of
the yaml package for writing out a data structure as a YAML file

12.8. Key concepts 127



The Biologist’s Guide to Computing, Release 0.9.1

• If in doubt, turn to the abundance of resources for Python online including manuals, tutorials and help
forums

128 Chapter 12. Practical problem solving



CHAPTER13

Working remotely

Sometimes you need to work on a computer different to the one that is in front of you. This may be because
you are working from home and need to log into your work computer. Alternatively it may be because you
need to do some work on a high-performance computing cluster.

In this chapter we will cover tools for logging into remote machines using the SSH (Secure SHell) protocol.
SSH is an open standard that is available on all UNIX based systems. In fact it has gained so much traction
that Microsoft have decided to add support for it in Windows.

13.1 Jargon busting
Although, it is relatively simple to log into a remote machine using SSH explaining it requires the use of
some networking terminology (as we are logging into the remote machine over a network). Let us therefore
start off with some jargon busting before we get into the practical details.

A computer can be connected to a network using physical Ethernet cables or in a wireless fashion using
WiFI. Computers connected to the same network can communicate with each other. This communication
takes place over so called “ports”, which are identified by numbers. A famous port is port 80, which is used
for HTTP (the HyperText Transfer Protocol) a.k.a. web-browsing. There are many other ports. For example
port 443 is used for HTTPS and port 22 is used for SSH.

Machines on a network can be identified and accessed via their IP (Internet Protocol) address. An IP address
that you may have come across is 127.0.0.1, it identifies the local machine that you are working on.

Although very useful, IP addresses can be difficult to remember. In order to overcome this problem, internet
service providers as well as the people responsible for looking after your organisations network make use of
domain name servers (DNS). The purpose of a DNS server is to translate unique resource locations (URLs)
to IP addresses.

A DNS server can also be used to lookup the IP address of a machine given a simpler more memorable name.
To illustrate this we can find the IP address(es) of Google’s web servers using the command host.

$ host www.google.com
www.google.com has address 62.164.169.148
www.google.com has address 62.164.169.185
www.google.com has address 62.164.169.163
www.google.com has address 62.164.169.177
www.google.com has address 62.164.169.166
www.google.com has address 62.164.169.152
www.google.com has address 62.164.169.155
www.google.com has address 62.164.169.154
www.google.com has address 62.164.169.176

129



The Biologist’s Guide to Computing, Release 0.9.1

www.google.com has address 62.164.169.159
www.google.com has address 62.164.169.165
www.google.com has address 62.164.169.181
www.google.com has address 62.164.169.187
www.google.com has address 62.164.169.170
www.google.com has address 62.164.169.144
www.google.com has address 62.164.169.174
www.google.com has IPv6 address 2a00:1450:4009:810::2004

If you copy and paste one of the IP addresses above into a web browser you should see the Google home
page.

Throughout the remainder of this chapter we will connect to remote machines using their hostname. What
happens in practise is that your institutes DNS server translates this hostname to an IP address and you send
your communications over the network to the machine identified by that IP address. Furthermore when
you communicate with the remote machine you will be using a specific port. The default port for the SSH
protocol is port 22.

13.2 Logging in using the Secure Shell protocol
In its most basic form the ssh command takes on the form ssh hostname. Where hostname is the name of
the remote machine that you want to log in to. This assumes that you want to login to the remote machine
using the same user name as that on the local machine. This is often not the case and it is common to see
the ssh command in the form ssh user@hostname, where user is the Unix user name you want to log in as
on the remote machine.

Let us illustrate this with an example. Suppose that one wanted to login to a remote computer named hpc,
this could for example be the head node on your institutes high-performance computing cluster. Assuming
that your user name on the head node was olssont then you could log in using the command below.

$ ssh olssont@hpc

Warning: All of the remote machines in this chapter are fictional. This means that if you try to run the
commands verbatim you will see errors along the lines of the below.

ssh: Could not resolve hostname ...

When trying these examples make sure that you are trying to connect to a machine that exists on your
network.

If the machine that you are trying to log in to has a port 22 open (the default SSH port) you will be prompted
for your password.

130 Chapter 13. Working remotely



The Biologist’s Guide to Computing, Release 0.9.1

What is a head node?

A computing cluster is basically a collection of computers. Computing clusters tend to make use of
a scheduler to distribute jobs on the cluster. A scheduler is basically a piece of software that has an
understanding of the computing resources available on the cluster. A user submits a job to the scheduler
and the scheduler puts the job in a queue and when appropriate resources become available it starts
the job on the cluster.
Most schedulers require a so called head node, also known as a master node, which acts as the control
centre. A user of a cluster would therefore login to the head node and from there the user would submit
a job to the scheduler. The scheduler would then dispatches the job on one or more cluster nodes when
the appropriate resources became available.

The above assumes that your DNS server can resolve the name hpc into an IP address. Depending
on how things are setup in your organisation you may need to use a more explicit name, for example
hpc.awesomeuni.ac.uk.

$ ssh olssont@hpc.awesomeuni.ac.uk

If your user name and password authenticates successfully the shell in your terminal will now be from the
remote machine. To find out the name of the machine that you are logged into you can run the command
hostname.

$ hostname
hpc

To disconnect from the remote host you can use Ctrl-D or the exit command.

$ exit
$ hostname
olssont-laptop

In the above the hostname command prints out the hostname of the local machine.

By default port 22 is used for the SSH protocol. However, sometimes a machine may expose its SSH server
on a different port. For example if we had a machine called bishop that exposed its SSH server on port 2222
one could login to it using the command below.

$ ssh -p 2222 olssont@bishop

In the above the -p flag is used to specify the port to connect to.

Sometimes you want to be able to run software that makes use of windowing systems (i.e. all software
with a graphical user interface). For example the statistical software package R has built in functionality
for displaying plots in a graphical window, which means it requires a windowing system. Most Unix-based
systems make use of the X11 as their windowing system. We therefore need to enable X11-forwarding in
SSH to be able to run programs that require graphics. This is achieved using the -X flag.

$ ssh -X olssont@pawn

In the above we are connecting to a machine named pawn with X11-forwarding enabled.

13.3 Copying files using Secure Copy
Now that we know how to login to a remote machine we need to work out how to copy data to and from it.
This is achieved using the scp, secure copy, command.

13.3. Copying files using Secure Copy 131



The Biologist’s Guide to Computing, Release 0.9.1

Suppose that we wanted to copy the file mydata.csv over to olssont‘s home directory on the hpc head node,
we could achieve this using the command below.

$ scp mydata.csv olssont@hpc:

Note the colon (:) after the host name. It demarcates the end of the host name and the beginning of the
location to copy the file to on the remote machine. In this instance the latter is left empty and as such the
original file name is used and the location for the file defaults to olssont‘s home directory on the remote
machine. The command above is equivalent to that below which specifies the home directory using a relative
path (~/).

$ scp mydata.csv olssont@hpc:~/

It is also possible to specify the location using an absolute path. For example if we wanted to save the file in
the /tmp directory this could be achieved using the command below.

$ scp mydata.csv olssont@hpc:/tmp/

Just like with the cp command it is possible to give the copied file a different name. For example to name it
data.csv (and place it in the /tmp directory) one could use the command below.

$ scp mydata.csv olssont@hpc:/tmp/data.csv

If the SSH server is listening on a port other than 22 one needs to specify the port explicitly. Confusingly
the argument for this is not the same as for the ssh command. The scp command uses the argument -P, i.e.
it uses upper rather than lower case. So if we wanted to copy the data to bishop, where the SSH server is
listening on port 2222 one could use the command below.

$ scp -P 2222 mydata.csv olssont@bishop:

Sometimes one wants to copy the entire content of a directory. In this case one can use the -r option to
recursively copy all the content of the specified directory. For example if we had a directory named data and
we wanted to copy it to pawn one could use the command below.

$ scp -r data/ olssont@pawn:

All of the commands above will prompt you for your password. This can get tedious. In the next section we
will look at a more secure and less annoying way of managing the authentication step when working with
remote machines.

13.4 Password-less authentication using SSH keys
An alternative and more secure method to using password based authentication is to use public-key cryp-
tography. Public-key cryptography, also known as asymmetric cryptography, uses a pair of so called “keys”.
One of these keys is public and one is private. The public key is one that you can distribute freely, in this
case to all the remote machines that you want to be able to login to. However, the private key must never be
compromised as it is what allows you access to all the remote machines. One way to think about this system
is to view the public key as a lock that only the private key can open. You can fit the all the machines that
you want secure access to with copies of the same public key as long as you keep the private key safe.

Enough theory let’s try it out.

The first step is to generate a public/private key pair. This is achieved using the command ssh-keygen. This
will prompt you for the file to save the key as, the default ~/.ssh/id_rsa file is a good option if you have not
yet setup any key pairs. You will then be prompted, to optionally, enter a passphrase. This provides another
layer of protection in case someone gets hold of your private key. However, it does mean that you will be

132 Chapter 13. Working remotely



The Biologist’s Guide to Computing, Release 0.9.1

prompted for the passphrase the first time you make use of the key in a newly booted system. Personally, I
am paranoid so I make use of the passphrase and I suggest that you do too.

$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/olssont/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:

If you used the default naming scheme for your key pair you should now have two files in your .ssh directory:
id_rsa (your private key) and id_rsa.pub (your public key).

$ ls -l .ssh/
-rw------- 1 olssont NR4\Domain Users 1679 23 Feb 2015 id_rsa
-rw-r--r-- 1 olssont NR4\Domain Users 407 23 Feb 2015 id_rsa.pub

Note that only the user has read/write permissions on the private key, whereas the pubic key is readable by
everyone.

Now let us setup password-less login to the cluster head node. First of all let us copy the public key to the
remote machine using scp.

$ scp ~/.ssh/id_rsa.pub olssont@hpc:

Now we need to login to the head node to configure it. At this point we will still need to use our password.
Once logged into the head node we need to create a .ssh directory in the user’s home directory (if it does
not already exist). We then need to append the public key to a file named authorized_keys in the .ssh
directory. Finally we logout of the head node.

$ ssh olssont@hpc
$ hostname
hpc
$ mkdir .ssh
$ cat id_rsa.pub >> .ssh/authorized_keys
$ exit

What does the >> expression do?

The >> symbol is similar to the > redirection symbol. However, redirection using > will replace an
existing file whereas >> will append to it. In this case we do not want to destroy any previously added
public keys so we append to the authorized_keys file.

Now we should be able to ssh and scp to the head node in a password-less fashion. If you setup your key
pair using a passphrase you will be prompted for it the first time you use the key pair.

Great that’s really cool! However, it was quite a lot of work to get the public key onto the remote machine.
There is a better way to do this using the program ssh-copy-id. Depending on the operating system that
you are using may need to install this program, see Managing your system (page 137) for details on how to
install software.

Once you have ssh-copy-id on your system you can provision a remote machine with your public key using
a single command. Below we use it to add our pubic key to bishop.

$ ssh-copy-id -i ~/.ssh/id_rsa.pub olssont@bishop

The optional -i flag is used to specify which public key should be copied to the remote machine.

13.4. Password-less authentication using SSH keys 133



The Biologist’s Guide to Computing, Release 0.9.1

13.5 Managing your login details using SSH config
Suppose that access to your institutes cluster was setup in a way that required you to use the full
hpc.awesomeuni.ac.uk host name, but that you wanted to be able to login using the shorter name hpc.
You can configure your machine to setup access in this fashion by creating the file .ssh/config file and
adding the lines below to it.

Host hpc
HostName hpc.awsomeuni.ac.uk
User olssont

The SSH configuration above also specifies the user name. This means that you can login to the head node
using the command below (note the lack of a user name).

$ ssh hpc

As you start using SSH keys to manage access to various machines you are likely to find yourself using
multiple key pairs. In this case you will want to be able to specify the name of the private key, also known
as an identity file, in the .ssh/config file.

Host hpc
HostName hpc.awsomeuni.ac.uk
User olssont
IdentityFile ~/.ssh/id_rsa

Finally in the examples described earlier access to bishop had been configured to use port 2222. To configure
access to this remote machine we could use the specification below.

Host bishop
HostName bishop
User olssont
Port 2222
IdentityFile ~/.ssh/id_rsa

Again, using the .ssh/config file in this way means that we do not need to remember port numbers and
what options to invoke the scp and ssh commands with. Copying a file can then be achieved using the
concise syntax below.

$ scp mydata.csv bishop:

Logging in to the machine becomes similarly trivial.

$ ssh bishop

13.6 Executing long running commands on remote hosts
One problem that one can encounter when working on a remote machine is that if the connection is broken
whilst a program is running it may fail.

Luckily, it is quite easy to work around this. All one needs to do is to prefix the command to run the program
of interest with nohup. The nohup command makes the program of interest immune to hangups.

To see this in action open up two terminals on your computer. In one of them we will monitor the running
processes using the command top.

134 Chapter 13. Working remotely



The Biologist’s Guide to Computing, Release 0.9.1

$ top

This should display a lot of information about the current running processes. To make things a little easier
to digest we can limit the output to the processes owned by you. Press U, which will prompt you for a user
name. Enter your user name and press enter. You should now only see the processes owned by you.

In the second terminal we will simulate a long running program using the command sleep, which simply
pauses execution for a specified number of seconds.

$ sleep 3600

In the first terminal, running top, you should now see the sleep program running.

Now close the second terminal, the one in which you are running the sleep command. Note that the sleep
program disappears from the top display. This is because the program was interrupted by the closing of the
terminal.

Open a new terminal. This time we will prefix the sleep command with nohup.

$ nohup sleep 3600

Now close the terminal running the sleep command again. Note that the sleep command is still present in
the top display. It will keep running until it is finished in an hours time.

13.7 Key concepts
• You can use the ssh command to login to remote machines

• You can copy data to and from remote machines using the scp command

• You can use SSH keys to avoid having to type in your password every time you want to interact with a
remote machine

• Using SSH keys is also more secure than using passwords

• If you need to interact with many remote machines it may make sense to create a .ssh/config file

• You can use nohup to ensure that long running processes are not killed by losing connection to the
remote machine

13.7. Key concepts 135



The Biologist’s Guide to Computing, Release 0.9.1

136 Chapter 13. Working remotely



CHAPTER14

Managing your system

This chapter will give a brief overview of how to install software on Unix-like systems. Different systems
operate in different ways and this can lead to confusion. This chapter aims to help you get an understanding
of the basic principles as well as an overview of the most common systems giving you a solid foundation to
build upon.

14.1 The file system
The file system on Unix-like systems is built up like a tree starting from, the so called, root. You can view the
content of your root system by typing in ls /.

On a linux box this may look like the below.

$ ls /
bin dev etc home lib lib64 lost+found media mnt opt proc root
run sbin srv sys tmp usr var

The files that you have been working with so far have been located in your home directory, e.g.
/home/olssont/.

However, the programs that you have been running are also files. Programs fundamental to the operating
system is located in /bin. Other programs installed by the systems package manager tend to be located in
/usr/bin.

To find out the location of a program you can use the which command. For example, let us find out the
location of the ls program.

$ which ls
/bin/ls

We can run the ls program using this absolute path, for example to view the content of the root directory
again.

$ /bin/ls /
bin dev etc home lib lib64 lost+found media mnt opt proc root
run sbin srv sys tmp usr var

137



The Biologist’s Guide to Computing, Release 0.9.1

14.2 The PATH environment variable
If running ls is equivalent to running /bin/ls it is worth asking how the shell knows how to translate ls to
/bin/ls. Or more correctly how does the shell know to look for the ls program in the /bin directory?

The answer lies in the environment variable PATH. This environment variable tells the shell the locations
where to go looking for programs. We can inspect the content of the PATH environment variable using the
echo command.

$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin

Note: Remember that in bash scripting we need to prefix variable names with a dollar sign ($) to access the
value the variable is holding.

The PATH variable basically contains a list of colon (:) separated directories. When you try to run a program
the shell looks in these directories, in order, and uses the first match it can find. If the program of interest is
not located in any of these directories you will see a command not found error issued from your shell.

$ this-program-does-not-exist
bash: this-program-does-not-exist: command not found

14.3 The root user
Now let’s have a look at the permissions of the /usr/bin directory. In the below we use the -l flag to list
the result in “long” format, i.e. to view the permissions etc, and the -d flag to state that we want to list the
directory itself rather than its content.

$ ls -ld /usr/bin/
drwxr-xr-x 1056 root wheel 35904 22 Mar 11:15 /usr/bin/

In the above the directory is owned by the root user and belongs to the wheel group. The permissions on
the directory states that only root, the owner, is allowed to write to the directory.

The root user is a special user that is all powerful, sometimes referred to as a superuser or “su” for short.
These special “powers” of the superuser are often needed to perform systems administration tasks, like
installing software and creating/deleting users.

On some systems you become the superuser, to perform systems administration tasks, by using the switch
user (su) command. This defaults to switching to the superuser.

$ su
Password:
#

Note that this prompts you for the root password. However, depending on who provisioned your machine
you may or may not have access to the root password. Note also that when you are logged in as the superuser
the prompt tends to change to a hash symbol (#). This is to warn you that things that you do can have dire
consequences.

A more modern approach to running commands with root privileges is to prefix the command of interest
with sudo. This allows you to run a command as another user, the root user by default.

The details of who can run commands using sudo are stored in the /etc/sudoers file.

138 Chapter 14. Managing your system



The Biologist’s Guide to Computing, Release 0.9.1

$ ls -l /etc/sudoers
-r--r----- 1 root wheel 1275 10 Sep 2014 /etc/sudoers

Note that you need root privileges to be able to read this file. We can therefore illustrate the use of the sudo
command by trying to read the file using the less pager.

$ sudo less /etc/sudoers

The only problem with the command above is that you won’t be able to run it unless you are on the sudoer’s
list in the first place.

A consequence of the fact that only the root user can write files to the /bin and /usr/bin directories is that
you need to have root privileges to install software (write files) to these default locations.

14.4 Using packagemanagers
All modern Linux distribution come with a so called package manager, which should be your first port of call
when trying to install software. Package managers make it easier to install software for two main reasons
they resolve dependencies and they (usually) provide pre-compiled versions of software that are known to
play nicely with the other software available through the package manager.

There are countless numbers of Linux distributions. However, most main stream distributions are derived
from either Debian or RedHat. Debian based Linux distributions include amongst others Debian itself,
Ubuntu, and Linux Mint. RedHat based distributions include RedHat, CentOS and Fedora.

Although Mac OSX comes with the AppStore this is not the place to look for scientific software. Instead two
other options based on the idea of the Linux package managers have evolved the first one is Mac Ports67

and the second one is Homebrew68. I would recommend using the latter as it has thriving scientific user
community.

14.4.1 Installing software onDebian based systems
Debian-based systems come with a huge range of pre-package software available for installation using the
Advance Package Tool (APT). To search for a piece of software package you would typically start off by
updating the list of packages available for download using the apt-get update command.

$ sudo apt-get update

One can then search for the specific software of interest, for example the multiple sequence alignment tools
T-Coffee69, using the apt-cache search command.

$ sudo apt-cache search t-coffee
t-coffee - Multiple Sequence Alignment
t-coffee-examples - annotated examples for the use of T-Coffee

To install the software package one uses the apt-get install command.

$ sudo apt-get install t-coffee

To uninstall a package one can use the apt-get remove command.

67 https://www.macports.org/
68 http://brew.sh/
69 http://www.tcoffee.org/Projects/tcoffee/

14.4. Using packagemanagers 139

https://www.macports.org/
http://brew.sh/
http://www.tcoffee.org/Projects/tcoffee/


The Biologist’s Guide to Computing, Release 0.9.1

$ sudo apt-get remove t-coffee

The command above leaves package configuration files intact in case you would want to re-use them in the
future. To completely remove a package from the system one would use the apt-get purge command.

$ sudo apt-get purge t-coffee

14.4.2 Installing software on RedHat based systems
RedHat and its free clone CentOS come, with fewer software packages than Debian. The T-Coffee software,
is for example not available. However, on the other hand RedHat is a super solid Linux distribution created
by Red Hat Inc, the first billion dollar open source company.

RedHat based systems use the YUM package manager. To search for software one can use the yum search
command. For example one could use the command below to search for the Git version control package.

$ yum search git

What doe YUM stand for?

YUM is an acronym for “Yellowdog Updater, Modified”. This name symbolises that YUM is a rewritten
and modified version of the “Yellowdog Updater” (YUP) tool, which was the package manager for the
Yellowdog Linux distribution.

To install a package using YUM one uses the yum install command.

$ sudo yum install git

To uninstall a package one can use the yum remove command.

$ sudo yum remove git

RedHat based system also provide groups of software. One group that you will want to install is the “Devel-
opment Tools” group. This includes the Gnu C Compiler (gcc) and the “make” tools that are often required
to install other software from source code.

$ sudo yum groupinstall "Development Tools"

There are far fewer packages available for Redhat based distributions compared to Debian based distribu-
tions. To make available more software packages for the former it is worth adding the Extra Packages for
Enterprise Linux (EPEL) repository. This can be achieved by running the command below.

$ sudo yum install epel-release

Warning: YUM has also got an “update” command. However, unlike APT where apt-get update updates
the list of available software packages YUM’s yum update will update all the installed software packages
to the latest version.

14.4.3 Installing software onMacOSX
This section will illustrate how to install software using the Homebrew70 package manager.

70 http://brew.sh/

140 Chapter 14. Managing your system

http://brew.sh/


The Biologist’s Guide to Computing, Release 0.9.1

First of all we need to install Homebrew itself. This can be achieved using the command below, taken from
the Homebrew home page.

$ /usr/bin/ruby -e "$(curl \
-fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

Homebrew refers to packages as “formulae”. That is because each package/formulae is a ruby script describ-
ing how to install/brew a particular piece of software.

Homebrew, just like APT, contains a local list of formulae that can be syncronised with the online sources
using the brew update command.

$ brew update

To search for a formulae one can use the brew search command. Let us for example search for the Git
version control package.

$ brew search git

To install a formulae using Homebrew one uses the brew install command.

$ brew install git

To uninstall a formulae one uses the brew uninstall command.

$ brew uninstall git

One of the things that you will want to do is to add another “tap” to Homebrew. Namely, the science tap.
In Homebrew a “tap” is an additional resource of formulae.

$ brew tap homebrew/science

We can now search for scientific software such as T-Coffee.

$ brew search t-coffee

And install it.

$ brew install t-coffee

14.5 Compiling software from source
Many scientific software packages are only available as source code. This may mean that you need to compile
the software yourself in order to run it.

There are lots of different ways of compiling software from source. In all likelihood you will need to read
and follow instructions provided with the software sources. The instructions are typically included in README
or INSTALL text files.

The most common scenario is that you need to run three commands in the top level directory of the down-
loaded software.

The first command is to run a script named configure provided with the software.

$ ./configure

The configure script makes sure that all the dependencies are present on your system. For example if the
software was written in C one of the tasks of the configure script would be to check that it could find a C
compiler on your system.

14.5. Compiling software from source 141



The Biologist’s Guide to Computing, Release 0.9.1

Another task that is commonly performed by the configure script is to create a Makefile. We already
encountered the Makefile in Automation is your friend (page 103). It is essentially a file describing how to
build the software.

Building the software, using the instructions in the Makefile, is also the next step of the process. This is
typically achieved by running the make command.

$ make

The make command typically creates a number of executable files, often in a subdirectory named build.

The final step is to install the software. This is achieved by copying the built executable files into a relevant
directory present in your PATH. Since these directories are typically owned by root the final step typically
requires superuser privileges.

$ sudo make install

14.6 Installing Python packages
Python is a high-level scripting language that is relatively easy to read and get to grips with. We have already
made use of Python in the previous chapters.

It is possible to create re-usable software packages in Python. In fact there are many such Python packages
aimed at the scientific community. Examples include numpy71 and scipy72 for numerical computing, sympy73

for symbolic mathematics, matplotlib74 for figure generation, pandas75 for data structures and analysis and
scikit-learn76 for machine learning. There is also a package aimed directly at the biological community,
namely biopython77.

Most packages are hosted on PyPI78 and can be installed using pip. The pip command comes prepackaged
with Python since versions 2.7.9 and 3.4. If you have an older version of Python you may need to install pip
manually, see the pip installation notes79 for more details.

Another really useful package is virtualenv. I suggest installing it straight away.

$ sudo pip install virtualenv

Virtualenv is a tool that allows you to create virtual Python environments.

What is a Python virtual environment?

A Python virtual environment is essentially a local copy of your system’s Python. The copy can live in
your home directory. This means that you can install Python packages into your virtual environment
without having root privileges. It also means that any packages that you install do not interfere with
your system Python and vice versa. Furthermore, if you have multiple virtual environment they are all
separate from each other. So if you have one virtual environment for each project that you are working
on their Python packages can be of different versions without causing any problems.

71 http://www.numpy.org/
72 https://www.scipy.org/
73 http://www.sympy.org/en/index.html
74 http://matplotlib.org/
75 http://pandas.pydata.org/
76 http://scikit-learn.org/stable/
77 http://biopython.org/
78 https://pypi.python.org
79 https://pip.pypa.io/en/latest/installing/#install-pip

142 Chapter 14. Managing your system

http://www.numpy.org/
https://www.scipy.org/
http://www.sympy.org/en/index.html
http://matplotlib.org/
http://pandas.pydata.org/
http://scikit-learn.org/stable/
http://biopython.org/
https://pypi.python.org
https://pip.pypa.io/en/latest/installing/#install-pip


The Biologist’s Guide to Computing, Release 0.9.1

Let’s use virtualenv to create a virtual environment.

$ virtualenv env

Note that env is a directory containing all the required pieces for a working Python system. To make use of
our virtual environment we need to activate it by sourcing the env/bin/activate script.

$ source ./env/bin/activate

This script basically mangles your PATH environment variable to ensure that virtualenv’s Python is found first.
We can find out which version of Python and pip is will be used by using the which command.

(env)$ which python
/home/olssont/env/bin/python
(env)$ which pip
/home/olssont/env/bin/pip

Note: The ./env/bin/activate script also changed the look of our prompt prefixing it with the name of the
virtual environment.

Now let us install numpy into our virtual environment.

(env)$ pip install numpy

To list installed packages you can use the pip list command.

(env)$ pip list
numpy (1.9.2)
pip (6.0.8)
setuptools (12.0.5)

When working on a Python project it can be useful to record the exact versions of the installed packages to
make it easy to reproduce the setup at a later date. This is achieved using the pip freeze command.

(env)$ pip freeze
numpy==1.9.2

Let us save this information into a file named requirements.txt.

(env)$ pip freeze > requirements.txt

To show why this is useful let us deactivate the virtual environment.

(env)$ deactivate
$ which python
/usr/bin/python

Note: The deactivate command is created when you run the ./env/bin/activate script.

Now let us create a new clean virtual environment, activate it and list its packages.

$ virtualenv env2
$ source ./env2/bin/activate
(env2)$ pip list
pip (6.0.8)
setuptools (12.0.5)

14.6. Installing Python packages 143



The Biologist’s Guide to Computing, Release 0.9.1

Now we can replicate the exact same setup found in our initial virtual environment, by running pip install
-r requirements.text.

(env2)$ pip install -r requirements.txt
(env)$ pip list
numpy (1.9.2)
pip (6.0.8)
setuptools (12.0.5)

This feature allows you make your data analysis more reproducible!

14.7 Installing R packages
R is a scripting language with a strong focus on statistics and data visualisation.

There are many packages available for R. These are hosted on CRAN80 (The Comprehensive R Archive
Network).

To install an R package, for example ggplot2, we need to start an R session.

$ R

R version 3.2.2 (2015-08-14) -- "Fire Safety"
Copyright (C) 2015 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin14.5.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

>

Then one can use the built-in install.packages function. For exampel to install the ggplot2 package one
would use the command below.

> install.packages("ggplot2")

This will prompt you for the selection of a mirror to download the package from. Pick one close to you.

That’s it, the ggplot2 package is now available for you to use. However, you need to load it using the library
function to use it.

> library(ggplot2)

80 https://cran.r-project.org/

144 Chapter 14. Managing your system

https://cran.r-project.org/


The Biologist’s Guide to Computing, Release 0.9.1

14.8 Installing Perl modules
Perl is a scripting language popular in the bioinformatics community. You may therefore have to work with
it.

There are a vast number of Perl modules available. These are hosted on CPAN81 (Comprehensive Perl Archive
Network).

Traditionally, CPAN hosted packages are installed using the cpan command. However, this can be quite
cumbersome as it asks the user a lot of questions with regards to how things should be configured. This
resulted in people developing a simpler tool to install Perl modules: cpanm (CPAN Minus). You may be able
to install cpanm using your distributions package manager, if not you can install it using cpan.

$ cpan App::cpanminus

When you run the command above you will notice that cpan prompts you for a lot of information, accepting
the defaults is fine. When it prompts you to select an approach:

What approach do you want? (Choose 'local::lib', 'sudo' or 'manual')

choose sudo. This will install cpanm into a location that is immediately available in your PATH.

Now that you have installed cpanm you can use it to install Perl modules more easily. For example to install
the Bio::Tools::GFF module you can simply use the command below.

$ cpanm Bio::Tools::GFF

14.9 Installing Latex packages
TeX is a collection of programs and packages that allow you to typeset documents. LaTeX is a number of
macros built on top of TeX. In Collaborating on projects (page 83) we used Latex for producing a PDF version
of the document.

Confusingly there are many different distributions of TeX, for example the dominant distribution of TeX on
Windows’ is MiKTeX82. On Unix based systems the most commonly used TeX distribution is TeX Live83. And
on Mac OSX it is MacTeX84.

In terms of package management Tex Live has got three different concepts: packages, collections and
schemes. A collection is a set of packages and a scheme is a group of collections and packages. Scheme’s can
only be selected during the initial install of TeX Live, whereas packages can be installed at any point.

One option is to use the scheme-full, which includes everything meaning that you are unlikely to need to
install anything else. However, this can take a long time and take up quite a lot of space on your system.

Another option is to start with a smaller scheme, for example scheme-basic, scheme-minimal and
scheme-small. Other packages and collections can then be installed as required.

Once you have install TeX Live you can manage it using the TeX Live Package Manager (tlmgr).

To search for a package you can use the tlmgr search command.

$ tlmgr search fontsrecommended
collection-fontsrecommended - Recommended fonts

81 http://www.cpan.org/index.html
82 http://miktex.org/
83 https://www.tug.org/texlive/
84 https://www.tug.org/mactex/

14.8. Installing Perl modules 145

http://www.cpan.org/index.html
http://miktex.org/
https://www.tug.org/texlive/
https://www.tug.org/mactex/


The Biologist’s Guide to Computing, Release 0.9.1

To install a package/collection.

$ sudo tlmgr install collection-fontsrecommended

14.10 Automated provisioning
As this chapter highlights managing software installations can be onerous and tedious. What makes matters
worse is that after you have installed a piece of software it can be very easy to forget how one did it. So
when you get a new computer you may find yourself spending quite sometime configuring it so that all your
analysis pipelines work as expected.

Spending time configuring your system may be acceptable if you are the only person depending on it. How-
ever, if other people depend on the machine it is not. For example, you may end up responsible for a scientific
web-service. In these instances you should look into automating the configuration of your system.

Describing how to do this is beyond the scope of this book. However, if you are interested I highly recommend
using Ansible85. To get an idea of how Ansible works I suggest having a look at some of the blog posts on
my website, for example How to create automated and reproducible work flows for installing scientific
software86.

14.11 Key concepts
• The file system is structured like a tree staring from the root /

• Programs are commonly located in /bin, /usr/bin, /usr/local/bin

• The PATH environment variable defines where your shell looks for programs

• You need superuser privileges to write to many of default program locations

• The sudo command allows you to run another command with superuser privileges if you are in the
sudoers list

• Package managers allow you to easily search for and install software packages

• Some software such as Python, R and Perl have their own built-in package managers

• It can be easy to forget how you how you configured your machine, do make notes

• Once you start finding it tedious making notes you should start thinking about automating the config-
uration of your system using a tool such as Ansible

85 https://www.ansible.com/
86 http://tjelvarolsson.com/blog/how-to-create-automated-and-reproducible-work-flows-for-installing-scientific-software/

146 Chapter 14. Managing your system

https://www.ansible.com/
http://tjelvarolsson.com/blog/how-to-create-automated-and-reproducible-work-flows-for-installing-scientific-software/
http://tjelvarolsson.com/blog/how-to-create-automated-and-reproducible-work-flows-for-installing-scientific-software/


CHAPTER15

Next steps

You’ve got to the end! Well done! Have a cup of tea and a biscuit.

This book has covered a lot of ground to give you a broad understanding of computing and practises to make
your life easier. I hope it will stand you in good stead in the future.

This chapters gives some suggestions on how to continue exploring.

15.1 Apply what you have learnt
The only way to learn is to keep practising. Try to think about how to apply what you have been learning. You
will run into problems, working your way through these problems is a great way to solidify your knowledge.

Think about your day-to-day work and your research. How could they be improved by scripting and comput-
ing? Try to solve problems that are outside of your comfort zone. This way you will extend your expertise.

15.2 Be social
Find friends and colleges that are in the same boat as you and talk to them about your computing experiences
and the problems that you are trying to solve. It is much more fun to learn together and you will keep each
other motivated.

Find someone more experienced than you and learn from them. Having a mentor to point you in the right
direction can be a great time saver.

Connect with me on Twitter, my personal account is @tjelvar_olsson87. I’ve also set up a more specific
account relating to this book @bioguide2comp88. Alternatively you can send me an email89, or message me
via the Facebook page90.

Let me know what you think of this book. I would really value your feedback.

Also, if you liked the book please spread the word!

If you want to receive updates about this book do sign up to the mailing list. You can find the sign up form
on the website: biologistsguide2computing.com91.

87 https://twitter.com/tjelvar_olsson
88 https://twitter.com/bioguide2comp
89 tjelvar@biologistsguide2computing.com
90 https://www.facebook.com/biologistsguide2computing
91 http://biologistsguide2computing.com/

147

https://twitter.com/tjelvar_olsson
https://twitter.com/bioguide2comp
mailto:tjelvar@biologistsguide2computing.com
https://www.facebook.com/biologistsguide2computing
http://biologistsguide2computing.com/


The Biologist’s Guide to Computing, Release 0.9.1

15.3 Recommended reading
Peter Norvig’s essay Teach Yourself Programming in Ten Years92 is really interesting. Norvig is the director of
research at Google and really knows what he is talking about. The essay should help you put your learning
into perspective and motivate you when things get tough.

Scott Granneman’s Linux Phrasebook93 provides a concise reference for learning the foundations of the most
important Unix command line tools.

Hadley Wickaham’s article Tidy Data94 describes the concept of “Tidy Data” in detail along with background,
motivation and case studies. It is an accessible read and will give you the tools required to structure your
data so that it can be visualised directly by ggplot2.

Scott Chacon and Ben Straub’s Pro Git95 book provides a comprehensive guide to Git. I would recommend
that you read chapter two of this book to solidify your understanding of Git. Many of the other chapters in
this book are also really valuable, in particular chapters three and five.

John D. Blischak , Emily R. Davenport, Greg Wilson’s article “A Quick Introduction to Version Control with
Git and GitHub” is aimed at scientists wanting to start using version control. It has some great figures for
explaining how Git works visually. DOI: 10.1371/journal.pcbi.100466896

Mark Pilgrim’s Dive Into Python 397 is a great book for learning the ins and outs of the Python programming
language. Note that this is a new and improved version of Dive Into Python98. I recommend that you read
Dive Into Python 3 as it is more recent and will teach you about the latest and greatest version of Python.

Zed A. Shaw’s Learning Python the Hard Way99 is another great book for learning Python. The book uses
what Shaw refers to as Educational Mithridatism100, where the use of repetition is applied to help you learn
quicker.

Nicolas P. Rougier, Michael Droettboom, Philip E. Bourne’s article “Ten Simple Rules for Better Figures” is
a great resource of practical advice to help you create better scientific illustrations. DOI: 10.1371/jour-
nal.pcbi.1003833101

Geir Kjetil Sandve , Anton Nekrutenko, James Taylor, Eivind Hovig’s article “Ten Simple Rules for Repro-
ducible Computational Research” provides advice on how you can make your research more easily repro-
ducible. DOI: 10.1371/journal.pcbi.1003285102

Greg Wilson, Jennifer Bryan, Karen Cranston, Justin Kitzes, Lex Nederbragt, Tracy K. Teal’s article Good
Enough Practices in Scientific Computing103 provides a well informed and opinionated view of tools and
practises that people performing scientific computing should adopt.

Andrew Hunt and David Thomas’ The Pragmatic Programmer104 is a modern classic on software develop-
ment. This book will teach you programming best practices.

Finally, if you enjoyed this book you may also want to have a look at my blog, tjelvarolsson.com105, where I
post about programming and systems administration from a scientific computing point of view.

92 http://norvig.com/21-days.html
93 http://www.granneman.com/writing/books/linux-phrasebook/
94 http://vita.had.co.nz/papers/tidy-data.pdf
95 https://git-scm.com/book/en/v2
96 https://dx.doi.org/10.1371/journal.pcbi.1004668
97 http://www.diveintopython3.net/
98 http://www.diveintopython.net/
99 https://learnpythonthehardway.org/

100 https://zedshaw.com/2015/09/14/educational-mithridatism/
101 https://dx.doi.org/10.1371/journal.pcbi.1003833
102 https://dx.doi.org/10.1371/journal.pcbi.1003285
103 https://arxiv.org/abs/1609.00037
104 https://pragprog.com/book/tpp/the-pragmatic-programmer
105 http://tjelvarolsson.com/

148 Chapter 15. Next steps

http://norvig.com/21-days.html
http://www.granneman.com/writing/books/linux-phrasebook/
http://vita.had.co.nz/papers/tidy-data.pdf
https://git-scm.com/book/en/v2
https://dx.doi.org/10.1371/journal.pcbi.1004668
http://www.diveintopython3.net/
http://www.diveintopython.net/
https://learnpythonthehardway.org/
https://zedshaw.com/2015/09/14/educational-mithridatism/
https://dx.doi.org/10.1371/journal.pcbi.1003833
https://dx.doi.org/10.1371/journal.pcbi.1003833
https://dx.doi.org/10.1371/journal.pcbi.1003285
https://arxiv.org/abs/1609.00037
https://arxiv.org/abs/1609.00037
https://pragprog.com/book/tpp/the-pragmatic-programmer
http://tjelvarolsson.com/


CHAPTER16

Glossary

Bit The smallest unit of information in computing, abbreviation of the term Binary digIT.

Blob Binary Large OBject, typically a large binary file stored in a database.

Bug Defect in a computer program which stops it from working as intended, see also debug.

Class In object-oriented programming a class is a template that can be used to create an object.

CPU Central Processing Unit, part of the computer that executes machine instructions.

Debug The activity of identifying and removing a bug (defect) from a computer program.

DNS Domain Name Server a machine that translates URLs to IP addresses.

DRY Don’t repeat yourself. Make use of a variables for frequently used values. Make use of functions for
frequently used processing logic.

Function A set of instructions for performing a procedure. Most commonly a function takes a set of argu-
ments and returns a value.

HTTP HyperText Transfer Protocol, commonly used for web browsing.

Hypervisor A piece of software that allows you to run a virtual machine.

List A common data structure representing an ordered collection of elements. Also known as an array.

Method A method refers to a function that is part of a class.

Init Abbreviation of the word “initialise”. Usually used to represent a one time event that that results in the
creation of a new entity.

Integer A whole number, i.e. a number that can be expressed without a fractional component.

I/O Input/Output; often used in the context of reading and writing data to disk.

Object In object-oriented programming an object is an instance of a class.

Object-oriented programming Programming methodology centered around the concept of objects rather
than actions and procedures.

IP address Internet Protocol address.

Pipe A pipe is a means to redirect the output from one command into another. The character used to
represent a pipe is the vertical bar: |.

RAM Random Access Memory, fast access volatile memory.

Recursion A procedure whose implementation calls itself. Of practical use for problems where the solution
depends on smaller instances of the same problem.

149



The Biologist’s Guide to Computing, Release 0.9.1

Scope Determines which parts of a program has access to what. For example any part of a program can
have access to a global variable. However, if a variable is contained within the scope of a function only
code within that function can access the variable.

Shell Program that allows the user to interact with the operating system’s services and programs, see also
terminal.

Standard input stream Stream of characters ingested by a program, often abbreviated as stdin. A common
way to send data to a program is to pipe them from the standard output stream of another program. In
the below we use the echo command to send the string foo bar baz to the standard input stream of
the wc command.

$ echo "foo bar baz" | wc
1 3 12

Standard error stream Stream of characters, representing error output, emitted by a program. Commonly
viewed in the shell when running a command. Often abbreviated as stderr.

Standard Library A set of functionality that comes built-in with the core programming language.

Standard output stream Stream of characters emitted by a program. Commonly viewed in the shell when
running a command. The standard output stream can be redirected using a pipe. Often abbreviated as
stdout.

State All the information, to which a program has access, at a particular point in time.

String A list of characters used to represent text.

TDD See test-driven development

Terminal Application for accessing a shell, see also shell.

Test-driven development Methodology used in software development that makes use of rapid iterations
of development cycles. The development cycle includes three steps:

1. Write a test

2. Write minimal code to make the test pass

3. Refactor the code if necessary

URL Unique Resource Location

Virtual machine An operating system running within a hypervisor rather than on the physical computer.

VM See virtual machine.

150 Chapter 16. Glossary


	Preface
	Who should read this book
	Licence
	Source code
	Feedback
	Acknowledgements

	Getting some motivation
	Why you should care about computing and coding
	What you can expect to learn here

	How to think like a computer
	Binary, bits and bytes
	Character encodings
	Real numbers
	Boolean logic
	The microprocessor
	Computer memory
	Key concepts

	First steps towards automation
	First things first, how to find help
	Creating a new directory for our project
	Downloading the Swiss-Prot knowledge base
	Creating a work flow using pipes
	Examining files, without modifying them
	Finding FASTA identifier lines corresponding to human proteins
	Extracting the UniProt identifiers
	Using redirection to create an output file
	Viewing the command history
	Clearing the terminal window
	Copying and renaming files
	Removing files and directories
	Key concepts

	Structuring and storing data
	Data structures
	Data persistence
	The beauty of plain text files
	Useful plain text file formats
	Tidy data
	Find a good text editor and learn how to use it
	Key concepts

	Keeping track of your work
	What is Git?
	First time configuration of Git
	Initialise the project
	Create a script for downloading the SwissProt FASTA file
	Improve script for downloading SwissProt FASTA file
	Create script for counting the number of proteins in a genome
	More useful git commands
	Key concepts

	Data analysis
	What is Python?
	Using Python in interactive mode
	Variables
	Determining the GC count of a sequence
	Creating reusable functions
	List slicing
	Loops
	Creating a sliding window GC-content function
	Downloading the genome
	Reading and writing files
	Creating a function for reading in the Streptomyces sequence
	Writing out the sliding window analysis
	Key concepts

	Data visualisation
	Starting R and loading the Iris flower data set
	Understanding the structure of the iris data set
	A note on statistics in R
	Default plotting in R
	Installing the ggplot2 package
	Loading the ggplot2 package
	Plotting using ggplot2
	Available ``Geoms''
	Scripting data visualisation
	Faceting
	Adding more colour
	Purpose of data visualisation
	Conveying a message to an audience
	Writing a caption
	Other useful tools for scripting the generation of figures
	Key concepts

	Collaborating on projects
	Find a friend
	Get a GitHub or BitBucket account
	Pushing the project to a remote server
	Collaboration using Git
	Working in parallel
	Resolving conflicts
	Key concepts

	Creating scientific documents
	Starting the manuscript
	Converting the document to HTML using pandoc
	Adding a figure
	Converting the document to PDF
	Reference management
	Adding meta data
	Benefits of using Pandoc and plain text files
	Alternative plain text approaches
	Using non-plain text file formats
	Key concepts

	Automation is your friend
	Introduction to make
	Creating a Makefile
	Key concepts

	Practical problem solving
	Stop and think
	Measuring success
	More string processing
	Extracting the organism name
	Only running tests when the module is called directly
	Counting the number of unique organisms
	Finding the number of variants per species and the number of proteins per variant
	Key concepts

	Working remotely
	Jargon busting
	Logging in using the Secure Shell protocol
	Copying files using Secure Copy
	Password-less authentication using SSH keys
	Managing your login details using SSH config
	Executing long running commands on remote hosts
	Key concepts

	Managing your system
	The file system
	The PATH environment variable
	The root user
	Using package managers
	Compiling software from source
	Installing Python packages
	Installing R packages
	Installing Perl modules
	Installing Latex packages
	Automated provisioning
	Key concepts

	Next steps
	Apply what you have learnt
	Be social
	Recommended reading

	Glossary

